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Summary 

 

Progress in delineating the neurocognitive correlates of important aspects of mental 

health has been limited by the use of clinical taxonomies for research purposes. For 

example, the obsessive-compulsive disorder (OCD) literature implicates 

dysfunctions in goal-directed control, metacognition and error monitoring, but these 

effects are either inconsistent and/or unspecific, observed in disorders beyond OCD. 

The experiments in this thesis investigated the potential of a transdiagnostic 

approach to resolve these issues, focusing on a sub-component of OCD that has 

transdiagnostic relevance—compulsivity. Specifically, this thesis tested the extent 

to which dysfunctions in goal-directed control, metacognition and error monitoring 

are better captured by a transdiagnostic compulsive dimension and thereby aims to 

develop the current neurocognitive characterisation of compulsivity.  

 

Chapter 2 investigated the premise that metacognitive deficits are implicated in 

compulsivity and may be obscured in case-control studies where patient groups 

present with, on-average, elevations in both depression and compulsive traits. The 

results were broadly supportive of the hypothesis, demonstrating that a host of 

metacognitive failures are characteristic of compulsivity, and that some effects 

associated with an anxious-depression dimension of mental health may serve to 

confound prior care-control work. These results are discussed with respect to how 

these impairments might lead to failures in the construction and update of mental 
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models of the world in compulsivity, potentially leading sufferers to rely excessively 

on habitual modes of thinking and behaving.  

 

Chapter 3 built on this work and sought to reconcile metacognitive findings with a 

related literature on goal-directed control. Specifically, we used 

electroencephalography (EEG) to test if the well-documented deficits in goal-

directed control commonly observed in compulsivity are associated with a failure to 

represent the mental model neurally, or if these deficits are solely explained by 

issues with the implementation of the model. We found evidence to suggest that the 

representation of the mental model was diminished in compulsivity, evidenced by a 

lack of sensitivity to state-state transitions in a well-studied two-step decision making 

task. This was apparent in parietal-occipital alpha power suppression and reaction 

times. We also observed that mid-frontal theta, a general marker of cognitive control, 

was lower in high compulsive individuals during the making of choice, but this bore 

a less clear relation to goal-directed behaviour. Together, the results suggest that 

compulsivity is likely characterised by dysfunctions in constructing an accurate 

mental model upon which to base goal-directed decisions, but not implementing 

goal-oriented actions themselves. 

 

Finally, Chapter 4 aimed to reconcile a set of transdiagnostic findings from a 

potentially related literature concerning error monitoring as indexed by error-related 

negativity (ERN). Alterations in ERN amplitude have been consistently observed in 

OCD and a multitude of other psychiatric disorders. Here, we tested if these neural 
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modulations might be better captured by a related transdiagnostic dimension 

pertaining to anxious-depression, rather than compulsivity itself. Contrary to our 

expectation, the data did not reveal any significant associations of ERN shifts with 

any psychiatric phenomena under study nor did transdiagnostic dimensions explain 

the data better.  

 

In summary, the findings of the thesis support goal-directed and metacognitive 

dysfunctions, but not ERN abnormalities, as neurocognitive correlates of 

compulsivity.  
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Chapter 1: General introduction 

 

Disorder category: Obsessive-compulsive disorder (OCD) 

When we think of compulsivity, which is the performance of persistent, repetitive, 

inappropriate actions despite no obvious goal-oriented function that often results in 

adverse consequences (Dalley et al., 2011), we normatively default to obsessive-

compulsive disorder (OCD). The Diagnostic and Statistical Manual of Mental 

Disorders (DSM-V (APA, 2013)) defines OCD as a condition that presents 

obsessions and/or compulsions that are time-consuming, functionally impairing or 

distressing. Obsessions are recurring intrusive thoughts/images that often lead to 

anxiety and distress, such as repeated thoughts about fatal germ contamination. 

These false beliefs are often accompanied by compulsions—the habitual or 

ritualistic acts that follow rigid idiosyncratic rules—in attempts to prevent the 

perceived negative outcomes. Notably, these compulsive actions are either not 

logically associated with what they are intended to overcome or are extreme, leading 

to severely disabling conditions. For example, an OCD patient with cleaning 

compulsions may be continually compelled to wash their hands for prolonged 

periods, numerous times over the course of a day. Not only does the 

disproportionate amount of time spent at the sink impairs daily functioning, the 

excessive washing is also detrimental to skin health. Unfortunately, disability in OCD 

is often understated, with about 27% of patients experiencing debilitating conditions 

that render them unable to work (Pinto et al., 2006).  
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Various epidemiological studies purport that OCD affects approximately 2.8-3.5% of 

the population (Fineberg, Hengartner, Bergbaum, Gale, Rössler, et al., 2013; Ruscio 

et al., 2010) and features relatively equally between males and females (Kessler et 

al., 2005). The disorder has an early onset—about two-thirds of OCD cases present 

by the age of 22 (Fineberg, Hengartner, Bergbaum, Gale, Gamma, et al., 2013)—

peaking in either early adolescence or early adulthood (Anholt et al., 2014). 

Neuroanatomically, cortical dysfunction in OCD is widespread. Functional imaging 

historically implicate abnormalities of the reciprocal connections between the orbital 

frontal cortex and the caudate (Whiteside et al., 2004) directly or indirectly through 

the thalamus; these are known as fronto-striatal “loops” (G. E. Alexander et al., 

1986). Alterations in many other brain structures such as grey and white matter 

volumes in the posterior cingulate, temporal lobe, parietal cortex and limbic circuit 

regions are also thought to contribute to the pathophysiology of OCD (Fouche et al., 

2017; Rotge et al., 2009, 2010). However, these cortical abnormalities are far from 

specific to OCD, for instance, dysfunction in the fronto-striatal loops are also thought 

to underlie the emergence of other clinical syndromes like schizophrenia (Simpson 

et al., 2010).  

 

Heritability-wise, twin studies suggest that there is about 27-47% of genetic influence 

on OCD symptomology in adults (van Grootheest et al., 2005). Yet, despite the 

identification of over 60 candidate genes for OCD, none have achieved genome-

wide significance (Hemmings & Stein, 2006). This is also applicable to most major 

psychiatric disorders: they are highly polygenic, have small effect sizes for their 
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individual polymorphisms and collaborative meta-analyses have not found support 

for any of their candidate genes to date (for instance, depression (Border et al., 

2019; Culverhouse et al., 2018)). Efforts to determine specific genes to OCD and 

other clinical phenomena may be complicated by the questionable biological validity 

of disorder categories; this is explored in the later section. 

 

Currently, the front-line treatments for OCD include both psychotherapeutic and 

pharmacological interventions (Bloch et al., 2010; Skapinakis et al., 2016). Exposure 

response therapy (ERP), a type of cognitive behavioural therapy (CBT), exposes 

patients to anxiety-provoking stimuli and challenges them to refrain from performing 

their compulsive behaviours. This is thought to be effective by not only challenging 

false beliefs (i.e. showing them the feared event will not occur), but also to extinguish 

automatic behavioural responses to triggering situations or stimuli (Foa et al., 2012; 

V. Meyer, 1966). As for pharmacotherapy, the choice medication is relatively high 

doses of selective serotonin reuptake inhibitors (SSRIs) that induce changes in 

serotonin (5-HT) function (Blier & El Mansari, 2007). These two treatment 

approaches are efficacious for about 50-68% of patients (Eddy et al., 2004; Fisher 

& Wells, 2005b; Pigott & Seay, 1999), however, there is still a large number of the 

clinical population who fail to see clinical benefit. The variability in treatment 

response is thought to partly reflect the heterogeneity in OCD diagnosis. Co-

morbidity—where an individual’s symptom profile passes the criteria for more than 

one disorder diagnosis—is present in the majority of OCD cases (Fineberg, 

Hengartner, Bergbaum, Gale, Rössler, et al., 2013; Ruscio et al., 2010). Indeed, 
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OCD co-morbidity with other psychiatric disorders such as depression, bipolar 

disorder, attention deficit hyperactivity disorder (ADHD) and anxiety disorders, have 

all been linked to poorer treatment outcomes (Abramowitz et al., 2000; Pallanti et 

al., 2011). Nonetheless, there are some hints of disorder-specific treatment effects. 

For instance, OCD with co-morbid tics similarly have worse response to SSRIs 

(Lochner & Stein, 2003) but they show a preferential therapeutic effect with the 

usage of dopamine antagonists adjuncts to SSRIs (Bloch et al., 2006). This suggests 

that there may be potential for effective individualised approaches to treatment. 

 

Shifting towards a transdiagnostic perspective 

The inconsistencies and complexities of not just treatment literature but also the 

neurobiological (e.g. neuroanatomical, genetic, etc.) studies of OCD suggest that 

what we know of the neural underpinnings of the disorder is still very much lacking. 

Unfortunately, this issue encapsulates all of psychiatry. For decades, the 

predominant taxonomic conceptualisations of mental health (e.g. the DSM-V (APA, 

2013) and the International Classification of Diseases (ICD-10) (Organization, 

1993)) have advanced psychiatry practice in profound ways by providing a 

standardised diagnostic rubric to assess mental health and guide treatment 

approaches worldwide. However, these diagnostic categories were never intended 

for research use. Through decades of research, it has become apparent that they 

lack clear biological grounding (McHugh, 2005) and in many cases, important 

psychometric properties. For instance, common mental health conditions like major 

depressive disorder and generalized anxiety disorder have questionable (kappa: 
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0.20–0.39) test-retest reliability (Regier et al., 2013).There is gathering agreement 

that while these taxonomic structures provided an important starting point, they may 

have reached the limits of their research and clinical utility (Insel et al., 2010). We 

highlight several grounds for this, taking the DSM as a key example. 

 

Firstly, putatively distinct disorders in the DSM are poorly distinguished. This is 

particularly the case for OCD, where compulsive symptoms are not unique to the 

disorder. This is acknowledged by the DSM-V; many other disorder categories also 

exhibit compulsivity, such as body-dysmorphic disorder (BDD) (Simberlund & 

Hollander, 2017) and addiction (e.g. alcohol (Burchi et al., 2019), gambling (van 

Timmeren et al., 2018), substance use (Werner et al., 2019)). In these other 

disorders, the main characteristics of rigid behaviours remain except that they are 

expressed in different contexts. For instance, patients with BDD are pre-occupied 

with body image related obsessions and compulsions, while patients suffering from 

substance use addiction persist in compulsive-like drug abuse to neutralise cravings 

and withdrawals associated with addiction (Everitt & Robbins, 2005). Indeed, clinical 

commentary has suggested that these disorders may be better classified on an 

obsessive-compulsive spectrum given their overlapping symptom characteristics 

(Phillips et al., 2010).  

 

Alongside the feature of similarity across disorders comes a broader issue of co-

morbidity. In OCD, this is not confined to disorders of compulsion. Epidemiological 

studies have found a staggering 87.3-90% of OCD patients to be co-morbid with 



16 
 

another disorder, the most common co-occurring condition being anxiety disorders 

at 73-75.8% (Fineberg, Hengartner, Bergbaum, Gale, Rössler, et al., 2013; Ruscio 

et al., 2010). As mentioned in the earlier section, high levels of co-morbidity in OCD 

are associated with, and may in part explain, noisier response to treatment 

(Abramowitz et al., 2000; Pallanti et al., 2011). Studies have suggested that common 

risk factors likely account for some level of co-morbidity across different aspects of 

mental health (Andrews et al., 2009). Indeed, the Hierarchical Taxonomy of 

Psychopathology (HiToP) (Kotov et al., 2017), which is a data-driven hierarchical 

framework that groups observed co-varying symptoms together to construct 

psychopathological dimensions, is able to explain shared symptomatology between 

disorder categories to a certain extent. However, the pervasive issue of co-morbidity 

in psychiatry highlights the failure of the current diagnostic classification to 

distinguish distinct clinical phenotypes (van Loo & Romeijn, 2015). 

 

Secondly, massive symptom variability and complexity are apparent within disorder 

categories. To be diagnosed with a disorder, the DSM outlines a set of criteria 

comprising of a cluster of symptoms. Only a subset of these symptoms is usually 

required to obtain diagnosis, and contradictory symptoms can also be equally 

contributable (e.g. major depressive disorder includes insomnia/hypersomnia as a 

criteria), leading to a multitude of symptom combinations. As a result, patients 

diagnosed with different psychiatric disorders may in fact have more similar clinical 

profiles than someone from their own disorder grouping. OCD is particularly known 

to be heterogenous in symptom presentation (Leckman et al., 2007; Lochner & Stein, 
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2003). Several groups have attempted to give more parsimonious descriptions to 

the heterogeneity of OCD symptoms by sorting them into more homogeneous 

groups utilising factor analysis in hopes of providing clearer basis for aetiology, 

pathogenesis and treatment. For instance, a prominent model sorts OCD 

symptomatology into four dimensions of symmetry/ordering, obsessions/checking, 

contamination/cleaning and hoarding (Mataix-Cols et al., 2005; van den Heuvel et 

al., 2009). These subtypes are in no way mutually exclusive, being able to co-exist 

in any blend, and are applicable to disorders beyond OCD. Though there are still 

mechanistic and neurobiological validity critiques to their conceptualisation (Bloch 

et al., 2008; McKay et al., 2004), there is some evidence that these symptom 

dimensions are distinguished by different neural systems (van den Heuvel et al., 

2009), lifetime co-morbidities (Torres et al., 2006), heritability patterns (Leckman et 

al., 2003) and treatment response (Abramowitz et al., 2003; Mataix-Cols et al., 1999, 

2002). OCD features also vary along other variables such as level of insight (Foa & 

Kozak, 1995; Matsunaga et al., 2002) and the ratio of obsessions to compulsions 

(Calamari et al., 2006; Taylor et al., 2006). For the latter, cluster studies suggest that 

a subgroup of OCD patients do not have elevated levels of dysfunctional beliefs. Co-

morbidity may again explain this to some extent. For instance, OCD patients with 

co-morbid bipolar disorder present with a higher rate of sexual/religious obsessions 

and lower rate of checking rituals than OCD without bipolar co-morbidity (Perugi et 

al., 1997). Together, these studies paint a picture of the great etiologic and 

phenomenological heterogeneity in OCD. 
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These issues of the current classification system have led to calls for a shift towards 

transdiagnostic approaches that cut across the current psychiatric taxa to re-

conceptualise mental health (Hyman, 2007). Global mental health initiatives 

including the National Institute of Mental Health's (NIMH) Research Domain Criteria 

(RDoC) initiative (Insel et al., 2010) and the European Commission's Roadmap for 

Mental Health Research (ROAMER) initiative (Haro et al., 2014) have even 

channelled substantial funding to boost psychiatry research toward this new 

direction in recent years. In particular, the RDoC project is structured around 

incorporating and integrating various analysis levels (e.g. from genes, molecules, 

cells, circuits, physiology, behaviour to self-report) dimensionally in six major bio-

behavioural domains to define psychiatric phenomena beyond traditional diagnosis 

(Cuthbert & Insel, 2013). Indeed, many researchers in the last decade have 

highlighted how transdiagnostic approaches can advance our understanding of 

mental health through the definition of clinically-useful phenotypes grounded in 

biological systems (Fusar-Poli et al., 2019; Gillan et al., 2017; Huys et al., 2016). 

The idea is that if clinical definitions are more closely aligned to aetiology, there 

would be greater potential to develop objective tests and criteria (e.g. neurocognitive 

tools, genetic basis) for diagnosis and early identification of risk. With a more 

homogeneous clinical population, treatment interventions may also be more tightly 

linked to precisely defined mechanisms and thereby be more effective.  

 

The rest of the chapter will outline how a transdiagnostic perspective has benefited 

or will benefit three existing neurocognitive models of OCD to provide the motivation 
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and context to the experimental hypotheses of this thesis investigating the 

neurocognitive correlates of compulsivity. 

 

Neurocognitive correlate 1: Habit and goal-directed control 

One prominent neuropsychological theory of compulsive behaviour implicates 

dysfunctions in behavioural control (Robbins et al., 2012). Dual system theories posit 

two modes of action control: the habit formation system and the goal-directed 

system (Balleine & Dickinson, 1998; Balleine & O’Doherty, 2010; Dickinson & 

Balleine, 1994). Habits are fast and automatic responses enacted not because of an 

expected outcome, but are instead reflexively triggered by acquired stimulus-

response (S-R) associations (Thorndike, 1898). Connectivity between the putamen 

and pre-motor cortex is thought to “stamp in” S-R associations that support the 

formation and maintenance of habits (de Wit, Watson, et al., 2012; Tricomi et al., 

2009; Yin, Ostlund, et al., 2005; Yin & Knowlton, 2006). Habits are computationally 

efficient, requiring minimal cognitive effort. Thus, relying on habitual associations 

frees cognitive resources to handle more demanding tasks. However, this comes at 

the cost of inflexibility where ingrained habits may become maladaptive in a fast-

changing environment. In contrast, goal-directed actions, supported by the caudate 

(Yin et al., 2004, 2006; Yin, Knowlton, et al., 2005) and medial orbital frontal cortex 

(Gremel & Costa, 2013; O’Doherty, 2011; Yin et al., 2008), are oriented towards 

achieving desirable outcomes (Tolman, 1948). Successful goal-directed control 

requires many resources, including planning, simulation, reflection and the 

continued tracking and updating of action-outcome associations. As such, this mode 
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of action control is much more computationally expensive but is thought to be critical 

for cognitive flexibility especially when goals/environments are ever-changing. 

 

Compulsive behaviour in OCD, where patients get ‘stuck’ in their repetitive action 

cycles, is hypothesised to arise from a shift away from goal-directed processing 

towards overreliance on habits (Robbins et al., 2012). Initially, OCD was 

conceptualised as a disorder of maladaptive habits, supported by the potential role 

of dysfunctional cortico-basal ganglia circuits in OCD (Graybiel & Rauch, 2000). 

Later, it emerged that this imbalance between the two modes of action control might 

be due to either an overactive habit system or an impaired goal-directed system. In 

examining the relative contribution of goal-directed versus habitual control in 

humans, empirical studies largely relied on outcome devaluation procedures (de Wit 

et al., 2007; de Wit, Standing, et al., 2012; Gillan et al., 2011). In these paradigms, 

participants learn stimulus-action-outcome contingencies by trial and error. In a 

subsequent phase of the task, one of the outcomes is reduced in value (i.e. 

devalued), which should reduce participants’ motivation to acquire it and therefore 

reduce responding. Participants’ continued response on trials with devalued 

outcomes suggests that the individual is unable to break strong S-R associations, 

an indication of habit dominance. On the other hand, successful inhibition on these 

trials suggests successful goal-directed control. The first study to use these 

techniques with OCD patients showed these individuals exhibited higher tendencies 

to keep responding to devalued outcomes (Gillan et al., 2011). A similar pattern of 

behaviour was also observed for avoidance of devalued shock consequences 
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(Gillan, Morein-Zamir, Urcelay, et al., 2014). For the latter study, OCD individuals 

showed no excess of fear responses to the stimuli as well as intact goal-directed 

contingency knowledge (i.e. shock expectancy). These persistent responses toward 

devalued outcomes despite having accurate action-outcome knowledge suggested 

that excessive habit formation may explain how actions become maladaptively 

repetitive in OCD. However, as acknowledged by most of these studies, the 

influence of habit and goal-directed control is not well dissociated in these 

devaluation techniques. Continued responses towards devalued outcomes can be 

driven by both increases in habit and impairments in goal-directed control.  

 

Following on, it was suggested that faulty goal-directed control may be 

predominantly responsible for devaluation insensitivity in these paradigms instead 

of overactive habits (Friedel et al., 2014). Functional activity in OCD patients during 

the performance of avoidance habits support this theory—the caudate nucleus, a 

region involved in goal-directed control, exhibited hyperactivity that correlated with 

individual differences in devaluation sensitivity and self-reported urges to perform 

habitual responses, rather than habit associated regions (Gillan, Apergis-Schoute, 

et al., 2015). Additional evidence comes from OCD patients showing deficits in the 

ability to make goal-oriented choices prospectively in an economic choice 

paradigam (Gillan, Morein-Zamir, Kaser, et al., 2014). Furthermore, as more precise 

mechanistic descriptions of habit and goal-directed systems develop in recent years 

(Dolan & Dayan, 2013), the formalisation of ‘model-based’ planning allows the 

examination of goal-directed control apart from habit influences that confound the 
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results of devaluation paradigms (Daw et al., 2005, 2011). Model-based planning, 

which measures the extent by which individuals use state-action relationships in 

conjunction with reward history to guide choice, is a purported mechanism of goal-

directed control and does converge on similar neural correlates such as activity in 

the caudate and medial orbital frontal cortex (Voon et al., 2015), the latter which is 

linked to prospective planning (Doll et al., 2015). In this framework, model-based 

planning is dissociated apart from ‘model-free’ learning where choices are simply 

enacted through the reinforcement of past rewards. This ‘model-based’/‘model-free’ 

computation from a two-step reinforcement learning paradigm (Daw et al., 2005, 

2011) was first utilised by Voon and colleagues to reveal that OCD patients indeed 

exhibit impairments in model-based planning (Voon et al., 2015). Conversely, 

model-free learning is intact in these individuals. Though model-free learning was 

initially theorised to reflect habitual strategies, there is currently little evidence for 

this (Friedel et al., 2014). Recent work have highlighted difficulty in studying habits 

in humans (de Wit et al., 2018) but a novel paradigm suggests that utilising extensive 

training and time pressure may overcome this issue (Luque et al., 2019). 

 

The converging evidence from multiple methodologies as presented above suggests 

that OCD is characterised by goal-directed processing failures that might explain 

why patients are stuck in their maladaptive habitual cycles. Subsequently, as this 

theory developed, researchers began to question if impaired goal-directed control 

could also be core to a broader class of disorders with predominant compulsivity. 

This comes from the observation that goal-directed failures assessed by both 
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devaluation and model-based planning paradigms are not exclusive to OCD but also 

found in other related disorders such as alcohol addiction, drug addiction and binge-

eating disorder (Ersche et al., 2016; Sjoerds et al., 2013; Voon et al., 2015). As such, 

the behavioural similarities of these compulsive type disorders are not merely 

superficial; they are also reflected in a transdiagnostic cognitive dysfunction 

(Robbins et al., 2012).  

 

However, the candidacy of goal-directed deficits as a transdiagnostic marker of 

compulsivity is troubled by studies reporting that goal-directed control impairment is 

also observed in arguably non-compulsive psychopathology such as autism 

spectrum disorder (ASD) (Alvares et al., 2016), schizophrenia (Culbreth et al., 2016; 

R. W. Morris et al., 2015), social anxiety disorder (SAD) (Alvares et al., 2014) and 

Tourette’s syndrome (C. Delorme et al., 2016). This is where the limitations of DSM 

disorder classification become starkly apparent. Case-control methodologies, i.e. 

comparing a diagnosed patient group to a healthy participant group, suffer from the 

difficulty in disentangling the confounding influences of co-morbid psychiatric 

disorders. For example, all the ‘non-compulsive’ psychiatric disorders which 

reported goal-directed learning deficits have significant co-morbidity and 

overlapping features with OCD (Bener et al., 2018; Carpita et al., 2019; Cath et al., 

2008; Sheppard et al., 1999). As such, it is uncertain if decision deficits are truly 

attributable to compulsivity or to another co-occurring symptom.  
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Unfortunately, this problem is pervasive in psychiatric research; neurocognitive 

models seem to have no unique association to any particular psychiatric phenomena. 

For example, inhibitory control (Lipszyc & Schachar, 2010) and temporal discounting 

(Bickel et al., 2012) are also observed in a variety of disorders; now purported to be 

trans-disease processes. Researchers have attempted to control for these 

confounding variables by recruiting patients without co-morbidities e.g. only 

diagnosed with OCD. However, this approach raises a concern as it assumes 

patients of these ‘pure’ cases do not present other psychopathology simply because 

these symptoms do not reach the criteria threshold for diagnosis. In fact, these single 

diagnosis patients typically have substantially elevated levels of other 

symptomologies. While controlling for these influences are possible, it requires 

enough statistical power (i.e. larger sample sizes) that are already difficult to reach 

in case-control clinical research where sample sizes of N = 20-30 are common. To 

reconcile this, researchers have begun to explore new methods that can study the 

relationship between cognitive and clinical phenotypes at-scale. 

 

Impaired goal-directed control and compulsivity 

This thesis focuses on one such approach that leverages normal variation in the 

general population, dispensing with the standard case-control design that pervades 

psychiatry in favour of studying dimensions of illness. Gillan and colleagues first 

utilised this dimensional approach to investigate if goal-directed deficits were 

specifically associated with compulsivity rather than a generalised effect ubiquitous 

across many disorders (Gillan et al., 2016). Instead of a traditional case-control in-
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person approach, the authors turned to internet-based testing (Gillan & Daw, 2016) 

and characterised psychiatric variation in a large general population sample (N = 

1,413). These participants completed the two-step reinforcement learning task (Daw 

et al., 2005, 2011) measuring model-based planning and a varied set of nine self-

report psychiatric questionnaires. The study first investigated the extent to which 

participants’ individual differences in model-based planning was related, separately, 

to the different questionnaire scores. They found that OCD symptoms significantly 

correlated with goal-directed control deficiency (similarly observed in a devaluation 

paradigm: (Snorrason et al., 2016)). Notably, model-based planning deficits were 

also associated to other psychiatric questionnaire scores such as eating disorders, 

impulsivity and alcohol addiction, reflecting the lack of specificity of the dysfunction 

to OCD.  

 

As the psychiatric questionnaire scores displayed both high collinearity with each 

other (e.g. trait anxiety and depression correlation: r = 0.81) and heterogeneity within 

questionnaire (e.g. schizotypy questionnaire measures positive/negative symptoms), 

Gillan and colleagues performed data-driven clinical phenotyping to investigate if a 

transdiagnostic dimensional psychiatric phenotype could explain this pattern of 

results. A factor analysis revealed a more parsimonious description of the psychiatric 

data; three dissociable transdiagnostic factors that were named to reflect their 

encompassing symptomology: ‘anxious-depression', ‘compulsive behaviour and 

intrusive thought' and ‘social withdrawal'. Particularly, the ‘compulsive behaviour and 

intrusive thought’ dimension was of interest—this dimension encapsulated the loss 
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of control over behaviour seen in OCD, addiction, etc., which was hypothesized to 

be mechanistically explained by dysfunctions in the goal-directed system. Crucially, 

when the relationship of model-based control with these three dimensions was 

assessed, the compulsive dimension showed specificity to reduced model-based 

planning while the other two ‘non-compulsive' factors (anxious-depression and 

social withdrawal) showed no significant relation. This suggested that impaired goal-

directed learning is a quantifiable transdiagnostic mechanism of compulsivity. This 

approach illustrates how the specificity of a neurocognitive model can be tested 

using rapidly acquired data from a general population sample. The method is also 

replicable; the same association of goal-directed deficits and the compulsive 

dimension was observed in another independent study (Patzelt et al., 2019). A 

common critique about this dimensional methodology, however, is that findings from 

these non-clinical groups may not generalise to diagnosed patients but a recent 

study has since proven otherwise—a compulsive dimension explained goal-directed 

deficits much better than disorder categories in a mixed OCD and generalised 

anxiety disorder patient group (Gillan et al., 2019).  

 

The ‘habit’ hypothesis of OCD has come a long way since its conceptualisation two 

decades ago (Graybiel & Rauch, 2000), but more work is needed to characterise 

the precise cognitive dysfunction being captured by the expansive description of 

‘goal-directed behaviour’ to move research in this area to the next phase of clinical 

translation. Goal-directed control, despite being often examined as a unitary 

construct, is an operation that relies on various cognitive processes. In broad 
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definition, there are two components necessary to perform goal-directed behaviour. 

Firstly, the knowledge of the environment, or a mental model of the world, is required 

to simulate or plan actions towards the intended objective (Doll et al., 2015). For 

instance, if an individual decides to stop by the pharmacy on their way to work, they 

will need to be aware of multiple relevant variables (e.g. spatial layout, opening 

hours of the store, etc.) in order to plan a successful trip to the pharmacy. Secondly, 

individuals would need the ability to implement this model into actions, to manipulate 

and contextualise these variables. As the literature has thus far been primarily 

concerned about the arbitration between habit and goal-directed systems underlying 

compulsive behaviour (Gillan & Robbins, 2014), how the aforementioned facets of 

goal-directed behaviour (i.e. having an accurate mental model versus executing it 

into behaviour) contribute to decision failures in compulsivity is unclear. Prior work 

with devaluation tasks have probed the mental model indirectly by examining if 

patients are able to report accurate action-outcome relationships. A number of 

studies observe that they can, suggesting that the mental model is intact in OCD 

(Gillan, Morein-Zamir, Urcelay, et al., 2014; Vaghi et al., 2019). However, these 

tasks are simple, only requiring the learning of straightforward stimulus-response 

associations. When more complex paradigms are used, OCD patients have shown 

impairments in their contingency knowledge that is correlated with devaluation 

failures (Gillan et al., 2011). In resolving this ambiguity, recent studies have turned 

to metacognition to investigate the state of the mental model in decision making in 

compulsivity. 
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Neurocognitive correlate 2: Metacognition 

Metacognition is often described as “thinking about thinking” and “cognition about 

cognition”. Simply put, it refers to our ability to reflect on and evaluate our own 

behaviour (Flavell, 1979). How people track or assess their own knowledge plays a 

critical role in guiding reasoning and enacting behaviour (Fleming et al., 2012)—an 

impaired awareness with respect to one’s own performance can lead to persistent 

pathological decision-making exhibited by patients with psychiatric disorders (Hoven 

et al., 2019). Particularly for OCD, prominent cognitive-psychological models have 

long proposed dysfunctional metacognitive impairments as central to the disorder. 

In these clinical accounts, OCD patients overestimate the credibility or responsibility 

of their intrusive thoughts, and as such result in engagement of compulsive safety 

behaviours (Matthews & Wells, 2008; Rachman, 1997; Salkovskis, 1985; Salkovskis 

& McGuire, 2003). For instance, an OCD patient with contamination fears may 

overstate the danger and frequency of germ contamination, resulting in excessive 

handwashing. However, this hypothesis of inflated or exaggerated belief in 

obsessive thoughts seems to contrast with reports that OCD patients have insight; 

they recognise that their compulsive actions are irrational/excessive i.e. ‘ego-

dystonic’. Some suggest that the insight into their beliefs/compulsions may be 

dependent on symptom severity, context (e.g. thoughts about contamination have 

different insight levels to those of aggressive/sexual nature) (Ryan, 2001) or reflect 

two separate metacognitive domains (Salkovskis et al., 1995). 
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Empirically, metacognition can be investigated via confidence judgements 

(metacognitive bias), which is the subjective feeling of being correct about a choice, 

decision or statement (Pouget et al., 2016). Confidence levels have been 

investigated in OCD in a variety of domains, but in particular, the memory domain 

has been under much focus. OCD checking behaviours are thought to be explained 

by under-confidence in memory resulting in a drive to repeatedly check if an action 

been completed (e.g. a stove turned off) to alleviate the obsessional metacognitive 

doubt (Fisher & Wells, 2008). One of the first studies that found support for this idea 

used an item recognition task and found that OCD patients exhibited lower 

confidence in their memory compared to healthy controls despite equal performance 

(McNally & Kohlbeck, 1993). This finding of under-confidence in memory re-

collection has since been replicated in many other studies (Cougle et al., 2007; 

Ecker & Engelkamp, 1995; Foa et al., 1997; Macdonald et al., 1997; Moritz & Jaeger, 

2018; Tolin et al., 2001). However, these confidence effects are inconsistent; a 

number of studies find no supporting evidence (Moritz et al., 2006, 2011; Moritz, 

Kloss, et al., 2009; Moritz, Ruhe, et al., 2009). Interestingly, a study proposed and 

showed that OCD checking behaviour can cause reductions in memory confidence 

(van den Hout & Kindt, 2003). Several subsequent studies have replicated the same 

results in both mental and real-life simulations (M. E. Coles et al., 2006; Radomsky 

et al., 2006; Radomsky & Alcolado, 2010). van den Hout and Kindt (2003) attribute 

this effect to increased familarity upon repeated checking, leading to reduced 

perceptual processing and thus less vivid recall of memories. Lowered confidence 
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levels have additionally been observed in perception, attention (Hermans et al., 

2008) and interoceptive (Lazarov et al., 2014, 2015) tasks.  

 

Linking this work with the decision making literature, a recent study by Vaghi and 

colleagues attempted to investigate how behaviour and confidence (an explicit 

report of belief and a proxy of the mental model) are ‘coupled’, i.e. tracking each 

other, using a change-point reinforcement learning task (Vaghi et al., 2017). In this 

paradigm, confidence is inversely related to the amount of behavioural adjustment 

(action) participants perform. In OCD patients, action and confidence was found to 

be ‘decoupled’ (in other words, not correlating as strongly), when compared to 

healthy controls. This divergence was accompanied by abnormalities in how action 

was updated with feedback. On the other hand, confidence reports and the 

sensitivity of confidence to feedback were not distinguishable to controls. As such, 

OCD individuals seem to have accurate meta-models but their action mechanisms 

fail to utilise the mental model for behaviour. However, other metacognitive 

impairments besides confidence bias have been linked to compulsivity in decision 

making. A study using a perceptual motion detection task found that non-clinical 

individuals on the high end of the OC symptom spectrum have lower metacognitive 

efficiencies (meta-d’/d’) (Hauser, Allen, Rees, et al., 2017), indicating that their 

confidence ratings were less accurate in discriminating whether they made the right 

decisions. 
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Overall, the studies seem to be inconsistent whether the metacognitive model is 

impaired in compulsivity. It is probable that some of these effects are not associated 

to compulsivity per se, but instead linked to psychopathology that exist in elevated 

levels in OCD patients. For instance, depression is well-known to have a negative 

bias in information processing (Williams et al., 2009) and has empirically shown 

lowered confidence levels in various cognitive domains consistently (Fieker et al., 

2016; Fu et al., 2005, 2012; Hancock, 1996). Indeed, some researchers have 

suggested that lowered confidence in memory could be accounted for by co-morbid 

depression (Moritz et al., 2006). Instead, the compulsive dimension may be 

associated to inflated confidence given that the phenotype as elucidated in Gillan et 

al. (2016) comprises of high loadings of schizotypy. Schizophrenic patients are 

overconfident, particularly in errors, and have lower metacognitive efficiencies than 

healthy controls (Gawęda et al., 2012; Kircher et al., 2007; Moritz et al., 2003, 2005, 

2014). These metacognitive dysfunctions are hypothesized to underlie false beliefs 

endorsed by schizophrenic patients (Joyce et al., 2013; Moritz et al., 2005), which 

is suggested to be phenomenologically similar to OCD obsessionality (Sanders et 

al., 2006). Once again, a transdiagnostic perspective would present a welcome 

resolution in clarifying the relationship between metacognition and compulsivity. 

 

Abnormal metacognition and compulsivity 

Following the success of the transdiagnostic approach in Gillan et al. (2016), Rouault 

and colleagues (2018) used the same internet-based dimensional approach to 

investigate metacognitive associations to various aspects of psychopathology. With 
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a similar two-choice perceptual decision-making task to Hauser et al. (2017), they 

first examined the extent to which confidence shifts were associated with a set of 

nine psychiatric questionnaire scores (Rouault et al., 2018). They observed that 

OCD symptoms were not linked to any alterations in confidence, much like the prior 

studies in decision making (Hauser, Allen, Rees, et al., 2017; Vaghi et al., 2017), 

while two common OCD co-morbidities, anxiety and depression, were linked to 

reduced confidence. The authors then sought to test if using transdiagnostic 

dimensions, which could dissociate anxious-depression from compulsivity, would 

better explain the data. Despite a smaller sample size (N = 498), the same three-

factor structure (anxious-depression, compulsive behaviour and intrusive thought, 

and social withdrawal) as the original study in goal-directed learning (N = 1,413) 

(Gillan et al., 2016) was replicated, highlighting the reproducibility of this method.  

 

Importantly, specific and distinct relationships between metacognition and 

psychiatric dimensions were revealed: the anxious-depression dimension was 

associated to lower confidence levels, while the compulsive dimension was related 

to inflated confidence levels. There was also a trend of enhanced metacognitive 

efficiency in high anxious-depressive individuals and diminished metacognitive 

efficiency in high compulsive individuals. That is, subjects with anxious-depression 

symptoms were not simply less confident, they tended to also be more accurate in 

their judgements mirroring much of the ‘sadder but wiser’ literature from the late 70’s 

(Alloy & Abramson, 1979). What is most striking about this study is that it suggests 

that transdiagnostic phenotyping can reveal associations potentially hidden by co-
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occurring symptomatology. This presents a point of consideration for investigating 

metacognitive associations in a OCD patient versus healthy control manner, as OCD 

has significant co-morbidity with anxiety and depression (Fineberg, Hengartner, 

Bergbaum, Gale, Rössler, et al., 2013; Ruscio et al., 2010). It is possible that 

reduced/null confidence effects previously observed in OCD patients were driven by 

anxious-depression symptomology, masking the true metacognitive dysfunctions 

associated to compulsivity.  

 

Within the earlier sections, we highlighted how a transdiagnostic approach may 

resolve issues arising from disorder versus healthy control investigations. Firstly, 

goal-directed control deficits appeared pervasive across various disorders without 

compulsive features but was shown to map specifically onto compulsivity with the 

dimensional methodology. Secondly, we delved further into examining mechanisms 

potentially underlying these goal-directed control dysfunctions, such as those of 

metacognition which may be obscured within diagnostic categories by co-occurring 

levels of psychopathology. In this final section, we will discuss a third concern 

relating to the characterisation of compulsivity—how a neurocognitive profile 

appears to be linked to compulsivity but may instead be accounted for by other 

correlated dimensions of mental health. 

 

Neurocognitive correlate 3: Error monitoring and the ERN  

Error monitoring, a process by which we detect our mistakes, is also implicated in 

OCD. Errors are an important source of information as they signal that changes in 
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attentional focus or other strategic behavioural adjustments are needed. Detecting 

errors is essential for goal-directed behaviour by enabling flexible adaptations of 

behaviour when performance problems arise or when contingencies change. In 

humans, the most prominent electrophysiological index of error monitoring is the 

error-related negativity (ERN). This negative-going deflection following an error 

response was first independently observed by two research groups in the early 

nineties in studies of event-related brain potentials (ERPs) (Falkenstein et al., 1990, 

1991; Gehring et al., 1993). The ERN is typically measured at midline fronto-central 

sites where its negativity is the largest and peaks at about 100ms from the time of 

the incorrect response. Though the debate about the functional significance of the 

ERN is unresolved (W. H. Alexander & Brown, 2011; Botvinick et al., 2001; Carter 

et al., 1998; Falkenstein et al., 1991; Gehring et al., 1993; Holroyd & Coles, 2002; 

Yeung et al., 2004), the different theories at least agree that the error signal serves 

to enact cognitive control to prevent future behavioural errors (Ridderinkhof et al., 

2004; Ullsperger et al., 2014).  

 

Clinically, OCD patients often report a constant feeling of erroneous or incomplete 

performance, or ‘not just right experiences’ that gives rise to the urge to perform 

“corrective” behaviours (M. E. Coles et al., 2003). Prominent theories suggest that 

these experiences might be explained by the generation of inappropriate or 

hyperactive error detection signals (Pitman, 1987). As abnormal error processing 

interferes with adaptive responses to goal-oriented outcomes, it may reasonably 

also contribute to impaired goal-directed behaviour in OCD. Additionally, 
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neuroimaging studies support the idea of dysfunctional performance monitoring 

architecture in OCD patients—they exhibit excessive activity in the orbital-frontal 

cortex, basal ganglia (Saxena et al., 1998) and the anterior cingulate cortex (ACC) 

(Ursu et al., 2003). Particularly relevant to the ERN is the ACC, as the structure is 

thought to be the neural generator of the error signal (Carter et al., 1998; Dehaene 

et al., 1994; Miltner et al., 2003; Ullsperger & Von Cramon, 2001). 

 

In the first initial test of ERN abnormality in OCD two decades ago, Gehring and 

colleagues conducted the Stroop task, a speeded two-choice response paradigm, 

in OCD patients and observed that these individuals exhibited enhanced ERN 

amplitudes when compared to healthy controls (Gehring et al., 2000). This finding 

has been since been replicated in numerous other studies with a variety of other 

conflict tasks: in adult (Endrass et al., 2008, 2010; Grützmann et al., 2016; Johannes, 

Wieringa, Nager, Rada, et al., 2001; Klawohn et al., 2014; Riesel et al., 2011, 2015; 

Ruchsow et al., 2007) and paediatric OCD individuals (Carrasco, Harbin, et al., 

2013; Hajcak et al., 2008; Hanna et al., 2018; Liu et al., 2014) as well as in subclinical 

OC populations (Gründler et al., 2009; Hajcak & Simons, 2002; Zambrano-Vazquez 

& Allen, 2014). However, some studies do fail in reporting this association (Agam et 

al., 2014; Mathews et al., 2016; Nieuwenhuis et al., 2005; Weinberg, Kotov, et al., 

2015) and one study even observed reduced ERN amplitudes in high compulsive 

individuals (Gründler et al., 2009). Meta-analyses suggest that some of these non-

significant or directionally reversed ERN effects are explained by task differences 

(Mathews et al., 2012; Riesel, 2019). For instance, ERN enhancement is typically 
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observed in paradigms primarily concerned with response-conflict, but not in 

probabilistic learning tasks (Gründler et al., 2009).  

 

The ERN as an endophenotype for…?  

Given its consistent association to OCD, ERN has been proposed to be an 

endophenotype for the disorder (Riesel, 2019). An endophenotype is a term to 

describe a stable phenotype of a disorder or illness that has a clear genetic 

connection, a valuable construct for any psychiatric syndrome. In order to be 

recognised as an endophenotype, the phenotype in question must be heritable, 

state-independent and found in unaffected family members of affected individuals at 

a higher rate than the general population (Gottesman & Gould, 2003). Many 

characteristics of ERN meet these criteria. Genetic analysis suggest that the ERN 

shows substantial heritability of about 50% (Anokhin et al., 2008). Enhanced ERN 

amplitudes can be observed independent of symptom severity in OCD patients 

(Endrass & Ullsperger, 2014; Riesel et al., 2014) and unaffected first-degree 

relatives of these individuals also show enhanced ERNs (Carrasco, Harbin, et al., 

2013; Riesel et al., 2011, 2019). Moreover, larger ERNs persist in OCD patients 

even after cognitive behavioural therapy (CBT) despite a reduction in their symptom 

severity (Hajcak et al., 2008; Riesel et al., 2015). These observations of heritability 

and state-independency suggest that the ERN might represent a trait of underlying 

vulnerability for OCD. 
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However, whether an enhanced ERN is an endophenotype for OCD is challenged 

by the finding that other psychiatric disorders, particularly anxiety disorders, also 

exhibit elevated ERNs. For example, generalised anxiety disorder (GAD) (Carrasco, 

Hong, et al., 2013; Riesel et al., 2019; Weinberg et al., 2010; Weinberg, Klein, et al., 

2012; Weinberg, Kotov, et al., 2015), health anxiety (Riesel et al., 2017) and social 

anxiety disorder (SAD) (Endrass et al., 2014) all exhibit larger ERNs than healthy 

controls. Enhanced ERN effects in these disorders are similarly found in unaffected 

first-degree relatives of anxiety patients (Riesel et al., 2019) and persist after 

successful treatment (Kujawa et al., 2016; Ladouceur et al., 2018). Moreover, the 

ERN has been shown to predict the onset of several anxiety disorders (Lahat et al., 

2014; A. Meyer et al., 2015; A. Meyer & Klein, 2018). Benzodiazepines, which are 

commonly prescribed for anxiety, reduce ERN amplitudes (de Bruijn et al., 2004; 

Johannes, Wieringa, Nager, Dengler, et al., 2001; Riba et al., 2005). In terms of its 

functional importance for anxiety, the ERN is related to the priming of defensive 

responses (Hajcak & Foti, 2008) and avoidance behaviour bias (Frank et al., 2005). 

As such, the error signal exhibits good face validity as a model of the anxious 

phenotype. Given that OCD often presents with elevated levels of anxiety, it is 

possible that the enhanced ERN often observed in this disorder in fact reflects 

patients’ co-morbid anxious symptoms, rather than any quintessential OCD feature 

such as obsessions or compulsions. However, some researchers disagree (Riesel, 

2019) as other anxiety disorders characterised by anxious arousal like phobic 

anxiety (Hajcak et al., 2003a; Moser et al., 2005) or post-traumatic stress disorder 

(PTSD) (Rabinak et al., 2013) do not report enhanced ERNs. Some studies have 
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attempted to clarify the specificity of ERN alterations with direct comparisons 

between OCD and anxiety disorders, but the evidence is unfortunately ambiguous. 

Enhanced ERNs have been observed (i) only in OCD and not anxiety (Xiao et al., 

2011), (ii) only in anxiety and not OCD (Weinberg, Kotov, et al., 2015) (iii) in both 

OCD and anxiety, with no significant difference in amplitudes (Carrasco, Hong, et 

al., 2013; Endrass et al., 2014). This thesis posits that this conundrum might be 

resolved using transdiagnostic methods. 

 

Investigating the neurocognitive correlates of compulsivity 

As outlined in the above sections, a transdiagnostic perspective may be critical for 

researchers to delineate the neurocognitive mechanisms that give rise to mental 

health phenomena. In this thesis, we consider three neurocognitive mechanisms 

that have been implicated in OCD and/or compulsivity and aim to use 

transdiagnostic methods to develop an integrated mechanistic view of how 

compulsions arise. To this end, we utilised behavioural, computational modelling 

and neuroimaging with electroencephalography (EEG) techniques plus the adoption 

of a recently developed dimensional approach that measures co-occurring self-

report psychiatric symptoms in large general population samples (Gillan et al., 2016). 

This dimensional methodology shares many features with other transdiagnostic 

proposals briefly mentioned previously, such as the RDoC project (Cuthbert & Insel, 

2013; Insel et al., 2010) and HiTOP framework (Kotov et al., 2017). Like the RDoC 

initiative, we first lean onto our current understanding of behaviour-brain 

relationships and attempt to relate them with clinical phenomena in a theory-driven 
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manner (Casey et al., 2013). Indeed, habit/goal-directed control and error monitoring 

are, in fact, two constructs highlighted in the RDoC framework. As for HiTOP, 

psychiatric dimensions from Gillan et al (2016) were similarly defined in a data-

driven way, albeit with a less ambitious scope. Here, we chose to utilise the 

dimensional framework from Gillan et al (2016) as the original study specifically 

sought to produce a quantification of compulsivity that was juxtaposed by other non-

compulsive dimensions of symptomatology with OCD relevance. This enables 

common co-occurring symptoms with compulsivity to be controlled for, of which is 

not necessarily methodologically clear to implement in the other frameworks and is 

an important consideration for ascertaining the specificity of our findings. Moreover, 

this approach has been validated in several reports (Gillan et al., 2016; Patzelt et al., 

2019; Rouault et al., 2018) and as such is now poised to be used to advance our 

understanding of the core neurocognitive deficits that give rise to compulsivity. This 

was the central goal of this thesis. 

 

The predominant habit hypothesis of OCD is both neurobiologically plausible and an 

intuitively straightforward way to explain how compulsive-like habits may arise 

independent of valence and context. Research in this area has primarily focused on 

delineating the direction of shift between the two modes of action control in 

compulsivity, whether compulsions arise from the dominance of habits or the 

impairment of goal-directed control. As the current state of the literature points to 

the latter hypothesis, this leaves the relatively unexplored question of which 

component(s) of this multifaceted concept of goal-directed control is responsible for 
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decision failures common to compulsivity. Here we tested if metacognitive 

processes, whether they are consciously reportable (e.g. confidence) or not (e.g. 

the ERN and other EEG signatures), are dysfunctional in compulsivity and whether 

they contribute to goal-directed deficits commonly observed in compulsive 

individuals. The central premise is that individuals need to be sensitive to the state 

of the environment (e.g. contingencies, errors) in order to mobilise resources in an 

adaptive, goal-directed fashion. If this is the case, is it possible that compulsivity is 

best described as a metacognitive problem, rather than a purely behavioural one?  

 

The first specific hypothesis that will be examined in this study is that compulsivity 

is linked to abnormalities in metacognition. Prior work with a transdiagnostic 

approach suggests that compulsivity is associated to inflated confidence and a trend 

toward decreased metacognitive efficiency in the context of perceptual decision-

making (Rouault et al., 2018). However, a case-control study with a reinforcement 

learning paradigm observed that metacognitive processes were not distinguishable 

between OCD patients and healthy controls (Vaghi et al., 2017). Here, we tested 

whether a transdiagnostic method is crucial to reveal metacognitive abnormalities 

that we hypothesized to be linked to compulsivity. Next, we attempted to relate 

alterations in the meta-model more directly to goal-directed control by investigating 

whether the failure in performing model-based plans is linked to an impairment in 

representing this mental model, assessed using a combination of behaviour and 

electrophysiology. Probing the mental model is important as it may form the basis 

by which we understand obsessive beliefs that are intimately connected to 
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compulsions and are hypothesised to drive reinforcing cycles of detrimental 

behaviour in OCD (Tolin et al., 2001, 2002). Lastly, we assessed the specificity of 

hyperactive error monitoring to compulsivity in the face of the evidence suggesting 

that enhanced ERNs are perhaps better explained by an anxious than compulsive 

phenotype. Together, these studies aim to further our understanding of the core 

mechanisms that give rise to compulsivity and in parallel to further probe the 

advantage that transdiagnostic methods might have over traditional case-control 

approaches. 
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Experiments and hypotheses 

 

Experiment 1: Transdiagnostic phenotyping reveals a host of metacognitive 

deficits implicated in compulsivity 

Experiment 1 tested the hypothesis that metacognitive processes are dysfunctional 

in compulsivity. A large online population sample of 437 participants completed a 

predictive inference task previously studied in a case-control investigation that 

observed no confidence abnormalities in OCD patients (Vaghi et al., 2017). We 

tested if confidence, its relationship to behaviour and to environmental evidence, 

were associated with self-reported OCD symptoms and if they were common to an 

additional eight other psychiatric phenomena. We then investigated if utilising a 

dimensional methodology that accounts for other co-occurring psychopathology 

would reveal and specify metacognitive deficits associated to compulsivity. 

 

Experiment 2: Encephalographic (EEG) correlates of reduced model-based 

planning in compulsivity 

Experiment 2 examined which component of goal-directed control is dysfunctional 

in compulsivity. We tested 192 participants performing the two-step reinforcement 

learning task (Daw et al., 2005, 2011) with electroencephalography (EEG) and 

identified neural signals relating to the representation or the implementation of the 

mental model. Importantly, we asked if these representations were altered in the 

transdiagnostic compulsive phenotype linked to failures in model-based planning. 
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Experiment 3: A dimensional study of error-related negativity (ERN) and self-

reported psychiatric symptoms 

Experiment 3 tested the hypothesis that a dimensional framework could reveal 

specific transdiagnostic clinical manifestations of error processing dysfunctions that 

have long been implicated in OCD and various anxiety disorders. We obtained EEG 

recordings from 196 participants who performed the Flanker task (Eriksen & Eriksen, 

1974) and observed if dysfunctional error monitoring indexed by error-related 

negativity (ERN) amplitudes shifts were, as per the literature, ubiquitous across 

various psychiatric phenomena including OCD and anxiety. Subsequently, we 

tested if the transdiagnostic approach was able to specify these amplitude shifts to 

a precise aspect of psychopathology—a dimensional anxious-depression or 

compulsive phenotype.
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Chapter 2: Transdiagnostic phenotyping reveals a host of 

metacognitive deficits implicated in compulsivity 

 

Introduction 

Intentional decisions are dependent on the interplay between behaviour and beliefs. 

Beliefs guide behaviour, and the consequences of our behaviour in turn update 

beliefs. Computational models of learning suggest that the strength of belief (i.e. 

‘confidence’) governs the extent of its influence on action; the more confident we are, 

the more our behaviour is influenced by pre-existing beliefs, compared to new 

information (Behrens et al., 2007; Nassar et al., 2010). A breakdown in the 

relationship between action and belief is suggested to be characteristic of 

compulsive behaviours, e.g. in obsessive-compulsive disorder (OCD) or addiction. 

In these disorders, behaviour often appears autonomous (unguided by conscious 

control) and ‘ego-dystonic’, such as persistent drug use despite negative 

consequences (Everitt & Robbins, 2005) or out-of-control repetitive checking despite 

knowing the door is locked (Fineberg et al., 2010).  

 

One potential cause of the divergence between intention and action in compulsive 

individuals is an impairment in the brain’s goal-directed system, which links actions 

to consequences and protects against overreliance on rigid habits (Gillan, Otto, et 

al., 2015). Goal-directed planning deficits have been consistently observed in OCD 

(Gillan et al., 2011; Gillan, Apergis-Schoute, et al., 2015; Gillan, Morein-Zamir, Kaser, 
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et al., 2014; Gillan, Morein-Zamir, Urcelay, et al., 2014) and related disorders (Voon 

et al., 2015)—there is evidence to suggest this constitutes a transdiagnostic 

psychiatric trait linked to several aspects of clinically-relevant compulsive behaviour 

(Gillan et al., 2016). 

 

The precise mechanism supporting this dysfunction is only partially understood as 

most employed tasks struggle to separate the construction of an internal model (e.g. 

action-outcome knowledge) from its implementation in behaviour. Those that have 

attempted this have yielded interesting, if equivocal, results. One study showed that 

OCD patients get stuck in habits even when they possess the requisite action-

outcome knowledge to theoretically perform in a goal-directed fashion (Gillan, 

Morein-Zamir, Urcelay, et al., 2014). This suggests that the implementation of goal-

directed behaviour is deficient in OCD, independent of the ability to construct the 

model. However, this does not mean the internal model is intact. Studies using more 

challenging tasks have found deficits in the acquisition of explicit action-outcome 

contingency knowledge in OCD patients (Gillan et al., 2011), suggesting that 

patients may have problems with both. On the other hand, these findings come from 

paradigms where instrumental action typically affects the kind of information that is 

gathered and thus are somewhat confounded and difficult to interpret.  

 

Recently Vaghi and colleagues addressed this metacognitive question in OCD 

patients with more precision by using a paradigm that examined how patients make 

trial-wise adjustments to behaviour (i.e. implicit model) and confidence (i.e. explicit 
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model) in response to feedback (Nassar et al., 2016; Vaghi et al., 2017). They found 

that in OCD, the association between confidence and behavioural updating (‘action-

confidence coupling’) was diminished—patients’ behaviour did not align with their 

internal model. Further, while confidence estimates did not differ from healthy 

controls, OCD patients showed abnormalities in their learning rate, making more 

trial-wise adjustments in response to feedback than controls (Vaghi et al., 2017).  

 

The finding of intact confidence in OCD is consistent with prior work in perceptual 

decision-making where individuals high versus low in OCD symptoms had no 

differences in their mean confidence (Hauser, Allen, Rees, et al., 2017)—results 

echoed by two large internet-based samples (N > 490) we conducted with the same 

task that also found no relationship to OCD symptoms (Rouault et al., 2018). A 

problem with this type of study design, however, is that it fails to capture the 

potentially competing influence of co-occurring disorders/symptoms in psychiatric 

populations. Even in studies where certain co-morbid diagnoses are explicitly 

excluded for, as in Vaghi et al. (2017), rates of depression and anxiety are greater 

than controls (Vaghi et al., 2017). Similarly, when self-report anxiety and depression 

severity are matched across groups by design, as in Hauser et al. (2017) (Hauser, 

Allen, Rees, et al., 2017), this may not accurately reflect the average OCD patient 

where co-morbidity is the rule, not the exception (e.g. >25% of OCD patients are co-

morbid for ≥4 additional diagnoses (Gillan et al., 2017)). An alternative approach 

measures these relevant co-occurring symptoms in the same individuals and seeks 

to account for their (competing or inflating) influence on the cognitive measure of 
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interest. We took this approach in a prior study and found that confidence 

abnormalities in perceptual decision-making were reliably associated with two 

transdiagnostic psychiatric dimensions in opposing directions: ‘anxious-depression’ 

was associated with reduced confidence, while ‘compulsive behaviour and intrusive 

thought’ was linked to inflated confidence (Rouault et al., 2018). This finding was 

striking because confidence was not correlated with either OCD or depressive 

symptoms in the same sample. Given this, it is possible that true metacognitive 

abnormalities in OCD were obscured by the competing influence of co-occurring 

depression in this dataset, and potentially, this same issue is at play in the prior 

case-control study examining metacognition in OCD in the context of reinforcement 

learning. 

 

To test this, here we used the same transdiagnostic methodology on an online 

sample of 437 participants who completed the same task from Vaghi and colleagues 

(Vaghi et al., 2017). We investigated the extent to which trial-wise action 

adjustments were disconnected from confidence reports with self-reported OCD 

symptoms, and whether this action-confidence decoupling is specific to OCD or also 

manifested in other psychiatric symptoms. We then tested if transdiagnostic 

phenotyping would reveal a more specific result—that only the compulsive 

dimension (as opposed to anxious-depression and social withdrawal) would be 

related to the decoupling of confidence and behaviour. Lastly, we investigated if the 

decoupling arose from failures in action-updating or confidence, and, with the same 

reduced Bayesian model used in the original study (McGuire et al., 2014; Nassar et 
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al., 2010, 2016; Vaghi et al., 2017), explored if there were abnormalities in the way 

compulsive individuals used information (e.g. recent outcomes, unexpected 

outcomes, environmental uncertainty and positive feedback) to update these 

behavioural measures.
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Methods 

Power Estimation. Previous research utilizing the predictive-inference task were 

constrained to small sample psychiatric populations (Vaghi et al., 2017). As such, 

we referred to earlier work that investigated confidence abnormalities in large 

general population cohorts with transdiagnostic symptom dimensions to determine 

an appropriate sample size (Rouault et al., 2018). The prior study reported an 

association of the anxious-depression dimension with lowered confidence level 

(β = −0.20, p < 0.001), an effect size suggesting that N = 295 participants were 

required to achieve 90% power at 0.001 significance level (significance threshold is 

corrected for multiple comparisons over the three psychiatric dimensions (‘anxious-

depression’, ‘compulsive behaviour and intrusive thought’ and ‘social withdrawal’) 

investigated). 

 

Participants. Data were collected online using Amazon’s Mechanical Turk (N = 589). 

Participants were ≥18 years, based in USA and had >95% of their previous tasks on 

the platform approved. After reading the study information and consent pages, they 

provided informed consent by clicking the ‘I give my consent’ button. Participants 

were paid a base sum of 7 USD plus up to 1 USD bonus. Of the sample, 249 were 

female (42.3%) with ages ranging from 20-65 (mean = 36.3. SD = 10.2) years. All 

study procedures were approved by and carried out in accordance with regulations 

and guidelines of Trinity College Dublin School of Psychology Research Ethics 

Committee. 
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Exclusion criteria. Several pre-defined exclusion criteria were applied to ensure 

data quality (see A.I. Supplemental Methods for exclusion criteria details). In total, 

153 participants (25.9%) were excluded, a rate typical for web-based experiments, 

leaving 437 participants for analysis. Of this, N = 20 (4.58%) of the current sample 

were the same participants from experiment 1 of a prior study where we examined 

confidence in perceptual decision-making (Rouault et al., 2018). An additional 10 

participants (2.29%) of the current sample were included from experiment 2 of that 

same paper. 

 

Predictive inference task. We adapted the predictive-inference task from Vaghi et 

al. (Vaghi et al., 2017) for web-based testing (Figure 2.1). Left and right arrow keys 

enabled response navigation while a spacebar press was used for decision 

confirmation (this is in contrast to a rotor controller used for response navigation in 

Vaghi et al.). The aim of the task presented to participants was to catch a particle 

flying from the centre of a large circle to its edge. To do so, participants positioned 

a ‘bucket’ (a free-moving arc) on the circle edge at the start of each trial. Once the 

bucket location was chosen, a confidence bar scaling 1 to 100 would appear below 

the circle after 500ms. The confidence indicator would begin randomly at either 25 

or 75. Participants then indicated how confident they were that the particle would 

land in the bucket. After confirmation of the confidence report, a particle was then 

released from the centre to fly towards the edge of the circle 800ms later. If the 

particle landed within the boundaries of the bucket, the bucket would turn green for 

500ms and the participant gained 10 points; else, the bucket turned red for 500ms 
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and lost 10 points. The number of points accumulated over the task was presented 

in the top right-hand corner for participants to track their performance. Payment was 

partially performance contingent; the more points earned, the higher amount of 

bonus they received at the end, up to a maximum of 1 USD on top of their flat fee of 

7 USD. Confidence ratings were not incentivized. 

 

On each trial, the particle’s landing location on the circle edge was sampled 

independently and identically from a Gaussian distribution with SD = 12. As such, 

the particle landed in the same location with small variations determined by noise. 

The mean of this distribution did not change until a change-point trial was reached, 

where it was re-sampled from a uniform distribution U(1,360) (i.e. the number of 

points on the circle). Participants would therefore have to learn the mean of the new 

generative distribution after a change-point. The probability of a change-point 

occurring on each trial was determined by the hazard rate. In the task, there were 

two hazard rate conditions that varied the number of change-points in a stretch of 

150 trials each: stable (hazard rate = 0.025, 4 change-points), and volatile (hazard 

rate = 0.125, 19 change-points). Hazard rate conditions were not relevant to the 

analyses of the current paper. The order of hazard rate conditions was randomly 

shuffled, as were the order of change-points within a condition. Participants 

completed 300 trials in total, divided into 4 blocks of 75 trials, with no explicit 

indication when a change in condition block occurred. Breaks were given between 

blocks which did not fall before the switch of a new hazard rate condition.  
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Before the start of the task, participants were instructed on the aim of the experiment 

and shown its layout. Participants then completed 10 practice trials that were 

excluded from the analysis and did not count for their final score. After the practice, 

they had to answer 5 quiz questions pertaining to the task instructions. If they 

answered any of the questions wrong, they would be brought back to the beginning 

of the instructions and taken through the practice block again. Additionally, in order 

to reduce the number of participants failing to utilize the confidence scale properly, 

the task was reset to the beginning if participants left their confidence ratings as the 

default score for more than 70% of the trials at the 20th and 50th trial mark. They 

would have to complete the instruction quiz again before proceeding with the task. 
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Figure 2.1. Predictive inference task.
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Figure 2.1. Predictive inference task. (a) Trial sequence. Participants were 

instructed to position a bucket (yellow arc on the circle edge) to catch a flying particle, 

and thereafter rated their confidence that they would catch the particle. Particles 

were fired from the centre of the circle to the edge. Points were gained when the 

particle was caught, and the bucket turned green; else, points were lost and the 

bucket turned red. (b) Particle trajectories. For every trial, landing locations were 

independently sampled from a Gaussian distribution. As such, particles landed 

around the same area with small variations induced by noise. For illustration 

purposes, dashed arrow lines represent particle trajectory of current (black) and past 

(blue) trials, which over trials allow subjects to generate a representation of the 

Gaussian. (c) Change-points. The mean of the distribution abruptly moves to 

another point on the circle when a “change-point” occurs. This new mean is then 

sampled in the same manner as (b) until the next change-point. 
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Self-report psychiatric questionnaires & IQ. Participants completed a range of 

self-report psychiatric assessments after the behavioural task. To enable application 

of the transdiagnostic analysis with psychiatric dimensions described in previous 

studies (Gillan et al., 2016; Rouault et al., 2018), we administered the same nine 

questionnaires assessing: alcohol addiction using the Alcohol Use Disorder 

Identification Test (AUDIT) (Saunders et al., 1993), apathy using the Apathy 

Evaluation Scale (AES) (Marin et al., 1991), depression using the Self-Rating 

Depression Scale (SDS) (Zung, 1965), eating disorders using the Eating Attitudes 

Test (EAT-26) (Garner et al., 1982), impulsivity using the Barratt Impulsivity Scale 

(BIS-11) (Patton et al., 1995), obsessive-compulsive disorder (OCD) using the 

Obsessive-Compulsive Inventory - Revised (OCI-R) (Foa et al., 2002), trait anxiety 

using the trait portion of the State-Trait Anxiety Inventory (STAI) (Spielberger et al., 

1983), schizotypy scores using the Short Scales for Measuring Schizotypy (Mason 

et al., 2005), and social anxiety using the Liebowitz Social Anxiety Scale (LSAS) 

(Liebowitz, 1987). The administration order of these self-report assessments was 

fully randomized. Following the questionnaires, participants completed a 

Computerized Adaptive Task (CAT) based on items similar to that of Raven’s 

Standard Progressive Matrices (SPM) (Raven, 2000) to approximate Intelligence 

Quotient (IQ). 

 

Transdiagnostic factors (dimensions). Raw scores on the 209 individual 

questions that subjects answered from the 9 questionnaires were transformed into 

factor scores (‘Anxious-Depression’, ‘Compulsive Behaviour and Intrusive Thought’, 
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and ‘Social Withdrawal’), based on weights derived from a larger previous study (N 

= 1413) (Gillan et al., 2016) (Supplemental Figure A.I.S6). These factors are not 

orthogonal and therefore correlate moderately, with values ranging from r = 0.34 to 

0.52. 

 

Action-confidence coupling. Regression analyses were conducted using mixed-

effects models written in R, version 3.5.1 via RStudio version 1.1.463 

(http://cran.us.r-project.org) with the lme4 package. We examined the coupling 

between trial-by-trial action updates (Action, the absolute difference of bucket 

position on trial t and t+1, as the dependent variable) and confidence (Confidence, 

confidence level on trial t+1, z-scored within-participant, as the independent 

variable) with age, gender and IQ as z-scored fixed effects co-variates. Within-

subject factors (the intercept and main effect of Confidence) were taken as random 

effects (i.e. allowed to vary across subjects). To test if questionnaire total scores or 

transdiagnostic dimension severities were associated to changes in action-

confidence coupling, the scores were included as z-scored between-subjects 

predictors in the basic model above. Separate regressions were performed for each 

individual questionnaire score due to high correlations across the different 

psychiatric questionnaires, whereas for the transdiagnostic analysis, we included all 

three psychiatric dimension scores in the same model, as correlation across 

variables was lessened in this formulation and thus more interpretable (only 3 

moderately correlated variables r = 0.34 to 0.52, instead of 9 that ranged from 

r = 0.13 to 0.84). This allowed us to examine the association between CIT and 
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various task measures, after the relationships with other dimensions (AD and SW) 

were controlled for. 

 

Action and confidence. A similar approach with mixed-effects models were used 

to analyse the basic relationship of questionnaire scores/transdiagnostic dimensions 

with Action or Confidence as dependent variables with the intercept as the random 

effect, controlled for age, gender and IQ. 

 

Computation model describing behaviour dynamics. To employ model-based 

analysis, we followed the same analysis steps as Vaghi et al. (Vaghi et al., 2017). 

We calculated task prediction error (PE: distance between the particle landing 

location and the centre of the bucket) and human learning rate (LRh: change in 

chosen bucket position from t to t+1 divided by PE on trial t) for each trial. Trials 

where LRh exceeded the 99th percentile (LRh > 7.75) and PE = 0 are thought to be 

unrelated to error-driven learning (Nassar et al., 2016), and were thus excluded from 

analyses with the model parameters (3.05% of total trials). 

 

In the task, several evidence sources were available to participants (e.g. new 

information gained, surprise from unexpected outcomes and uncertainty of their 

belief) to estimate the mean of the generative distribution in order to position their 

bucket at where they hope to catch the greatest number of particles. We fitted a 

quasi-optimal Bayesian learning model, identical to the model specified in Vaghi et 

al. (Vaghi et al., 2017) using functions freely available online from the original study, 
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to particle landing location data in MATLAB R2018a (The MathWorks, Natick, MA). 

The model estimates parameters are thought to underlie task dynamics. This 

included PEb (model prediction error, an index of recent outcomes), CPP (change-

point probability, a measure representing the belief of a surprising outcome) and RU 

(relative uncertainty, the uncertainty owing to the imprecise estimation of the 

distribution mean; labelled as (1-CPP)*(1-MC) in Vaghi et al.). Similar to Vaghi et al., 

the correlations between model parameters were moderately correlated, with the 

largest correlation between PEb and CPP: rs = 0.68 (see Supplemental Table 

A.I.S1). This is because large deviations necessarily induce a CPP of near 1 and 

small deviations a CPP near 0. 

 

The reduced quasi-optimal Bayesian learner, in accordance with prior literature 

(McGuire et al., 2014; Nassar et al., 2010, 2016; Vaghi et al., 2017), uses a delta-

rule to update its estimate of belief about the particle landing location distribution: 

 

𝐵𝑡+1 =  𝐵𝑡 + 𝛼𝑡  ×  𝛿𝑡 

 

B is the new belief estimate on each trial t, which is equal to a point estimation of 

the mean of the Gaussian distribution where particle locations were sampled (i.e. 1 

to 360). Its update is dependent on the learning rate 𝛼 (LRb) and model prediction 

error 𝛿 (PEb). PEb is calculated as the difference between the belief estimate Bt and 

the new particle landing location Xt and is a measure of information gained from the 

most recent trial. 
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𝛿𝑡 =  𝑋𝑡 − 𝐵𝑡 

 

As with common reinforcement learning models, LRb determines how much new 

information (PEb) will update the belief estimate. However, LRb is dynamic in the 

current model i.e. can change on every trial. If LRb = 0, new evidence has had no 

impact on the update of the belief estimate, while LRb = 1 suggests that the new 

belief estimate is entirely determined by the most recent outcome. The magnitude 

of LRb is dependent the statistics of environment with the equation: 

 

𝛼𝑡 =  Ω𝑡 + (1 − Ω𝑡) (1 − 𝜈𝑡) 

 

The first term, the change-point probability Ω (CPP), represents an estimate of how 

likely a change in particle location distribution mean has occurred on a given trial. 

The second term, model confidence 𝜈 (MC), represents the uncertainty due to an 

inaccurate estimation of the mean. For regression analyses, (1 − Ω) (1 − 𝜈) was 

labelled as RU (as the additive inverse of MC is relative uncertainty). These two 

components allow the model to appropriately update belief according to (i) 

unexpected changes in the environment (change-points) and (ii) the uncertainty 

about the distribution mean—thus informing when to disregard outliers when the 

mean is certain. New outcomes are more influential when the model believes that 

the distribution mean has changed (i.e. CPP is large) or is less sure about the true 

distribution mean (i.e. MC is small). 
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The model generates CPP as the relative likelihood that a new particle location is 

sampled from a new distribution during a change-point (mean determined by a 

uniform distribution U over all 360 possible locations) or drawn from the same 

Gaussian (N) where the current belief estimate Bt is centered upon. These are 

influenced by the hazard rate H, the probability that the mean of the distribution has 

changed. We set H equal to the hazard rates of the task trials (which were either 

H = 0.025 or 0.125, depending on the block condition). When the probability of the 

new particle location coming from a new distribution is high, CPP will be close to 1. 

 

Ω𝑡 =  
𝑈(𝑋𝑡 | 1,360)𝐻

𝑈(𝑋𝑡 |1,360)𝐻 + 𝑁(𝑋𝑡 |𝐵𝑡 , 𝜎𝑡
2)(1 − 𝐻)

 

 

 𝜎𝑡
2 is the estimated variance of the predictive distribution, which consists of the 

variance of the generative Gaussian distribution 𝜎𝑁
2  and the generative variance 

modulated by MC (𝜈). As the predictive distribution variance is dependent on MC, it 

is larger than the generative variance where MC is the smallest (i.e. after change-

points, where uncertainty of the new distribution mean is the highest) and will slowly 

reduce towards the generative variance. Thus, the model describes particle 

locations occurring after a change-point as less likely sampled from another new 

distribution. 
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𝜎𝑡
2 =  𝜎𝑁

2 + 
(1 − 𝜈𝑡)𝜎𝑁

2

𝜈𝑡
 

 

Lastly, MC is computed for the subsequent trial with a weighted average of the 

generative variance conditional on a change-point (first term), generative variance 

conditional on no change-point (second term), and variance due to the model’s 

uncertainty of whether a change-point occurred (third term) in the numerator. The 

denominator includes the same terms plus just the generative distribution variance 

(𝜎𝑁
2) representing the uncertainty owing to noise. The full equation is as follows: 

 

𝜈𝑡+1 =  
 Ω𝑡𝜎𝑁

2 + (1 − Ω𝑡)(1 − 𝜈𝑡)𝜎𝑁
2 + Ω𝑡(1 − Ω𝑡)(𝛿𝑡𝜈𝑡)2

Ω𝑡𝜎𝑁
2 + (1 − Ω𝑡)(1 − 𝜈𝑡)𝜎𝑁

2 + Ω𝑡(1 − Ω𝑡)(𝛿𝑡𝜈𝑡)2 + 𝜎𝑁
2 

 

Influence of parameters on action and confidence. Regressions were 

constructed as mixed-effect models with all of the model parameters (where PEb is 

taken as its absolute) and a Hit categorical predictor (previous trial was a hit or miss) 

as within-subject regressors, controlled for age, IQ and gender. These regressions 

control for shared variance. For the regression on Action, following prior literature 

(McGuire et al., 2014; Nassar et al., 2010, 2016; Vaghi et al., 2017), all predictors 

except PEb were implemented as interaction terms with PEb. For Confidence, we 

used a similar regression model but without the interaction term with PEb and with 

the predictors z-scored at participant level. We obtained similar regression estimates 

with Vaghi et al. (Vaghi et al., 2017), suggesting that action/confidence was 
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appropriately updated with these parameters describing belief updating 

(Supplemental Table A.I.S2). To investigate the relationship of the questionnaire 

scores and psychiatric dimensions with the influence of these parameters on 

action/confidence, we included these scores as z-scored fixed effect predictors in 

the basic model above (individual models were examined for each questionnaire 

score, while for the transdiagnostic analysis, all three psychiatric dimension scores 

were included together). 

 

There was some evidence of heteroskedasticity in the association between 

psychiatric variables and task parameters. White’s tests indicated that the model of 

RU on confidence with psychiatric dimensions was heteroskedastic (p = 0.04, but 

not the other parameters: p > 0.12). We therefore estimated heteroskedasticity-

consistent standard errors for all coefficients reported by the vcovHC function from 

the sandwich package in R, detailed in the Supplement (Supplemental Table 

A.I.S3). The results do not diverge from those reported in the main paper. 

 

For details of all regression equations, see A.I. Supplemental Methods. 

 

Data Availability. The code and data to reproduce the main analyses are freely 

available in an Open Science Framework (OSF) repository, at https://osf.io/2z6tw/.

https://osf.io/2z6tw/
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Results 

Action-confidence decoupling is linked to various psychiatric phenomena. In 

line with prior research, size of action updates (bucket position difference from trial 

t and t+1) were strongly related to confidence within-subjects (β = -8.85, Standard 

Error (SE) = 0.31, 95% Confidence Interval (CI) [-9.45, -8.25], p < 0.001) (Figure 

2.2a), such that lower confidence was linked to larger updates, in the sample as a 

whole. Previous work by Vaghi et al. found that OCD patients exhibited reduced 

coupling between action and confidence compared to controls, which was correlated 

to the severity of self-reported OCD symptomology within the patient sample (Vaghi 

et al., 2017). We tested the latter in a general population sample and replicated this 

result; OCD symptom severity was associated with significantly lower action-

confidence coupling (β = 1.30, SE = 0.21, 95% CI [0.89, 1.71], p < 0.001, corrected) 

(Figure 2.2b). However, we found that this relationship was profoundly non-

specific—all nine questionnaire scores tested showed a similar pattern of reduced 

coupling. 6/9 questionnaires (alcohol addiction, depression, eating disorders, 

impulsivity, OCD and schizotypy) had significant decoupling at p < 0.001 corrected; 

the remaining three (apathy, social anxiety, trait anxiety) trended in the same 

direction, but did not survive Bonferroni correction for multiple comparisons.
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Figure 2.2. Action-confidence coupling and its relationship with questionnaire scores/dimensions (controlled for 

IQ, age and gender).  
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Figure 2.2. Action-confidence coupling and its relationship with questionnaire 

scores/dimensions (controlled for IQ, age and gender). AD: anxious-depression, 

CIT: compulsive behaviour and intrusive thought, SW: social withdrawal.  

(a) Regression model where action update is predicted by confidence. Individual 

coefficients are represented by circles. Marker indicates the mean and standard 

deviation. As expected, regression coefficients were negative, such that higher 

confidence was associated with smaller updates to the bucket position (‘action’).  

(b) Associations between action-confidence coupling and questionnaire scores or 

psychiatric dimensions. All questionnaire scores predicted a decrease in action-

confidence coupling. This decoupling relationship was strongest for the CIT 

dimension.  

Each questionnaire score was examined in a separate regression, while dimensions 

were included in the same regression model. The Y-axes shows the percentage 

change in the size of the action-confidence coupling effect as a function of 1 

standard deviation increase of questionnaire/dimension scores. Error bars denote 

standard errors. op < 0.05, oop < 0.01 uncorrected; *p < 0.05, **p < 0.01, ***p < 0.001 

corrected. Results are Bonferroni corrected for multiple comparisons over number 

of psychiatric independent variables investigated. See also Supplemental Figure 

A.I.S8. 
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Transdiagnostic analysis shows a more specific pattern. When we refactored 

the data into three transdiagnostic dimensions defined previously in the literature, a 

profoundly different picture emerged. Compulsive behaviour and intrusive thought 

(CIT) was the only dimension to show decreased action-confidence coupling (β = 

1.57, SE = 0.23, 95% CI [1.13, 2.01], p < 0.001, corrected) (Figure 2.2b). Thus, 

while reductions in action-confidence coupling show broad and non-specific 

relationships to all questionnaire scores studied here, this pattern is explained by a 

single transdiagnostic dimension. 

 

Compulsivity is linked to inflated confidence, not aberrant action-updating. 

Prior work using this task in diagnosed patients found no confidence biases in OCD, 

but abnormalities in action-updating. Using our transdiagnostic method, we found a 

strikingly different pattern of results. CIT was associated with higher overall 

confidence levels (β = 6.74, SE = 1.02, 95% CI [4.75, 8.73], p < 0.001, corrected), 

and not changes in action-updating. In line with prior work, we found that anxious-

depression (AD) was associated with lower confidence (β = -3.42, SE = 1.04, 95% 

CI [-5.45, -1.39], p = 0.003, corrected) (Figure 2.3a). Because OCD patients tend to 

have high levels of AD, this finding suggests that a transdiagnostic method may be 

necessary to reveal the role confidence plays in clinical phenotypes, which could 

otherwise be obscured within the heterogeneous diagnostic category. In terms of 

action-updating, only social withdrawal (SW) showed an association, such that 

participants scoring high in this dimension tended to move the bucket more (β = 

0.89, SE = 0.28, 95% CI [0.34, 1.45], p = 0.005, corrected) (Figure 2.3b).  
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Figure 2.3. Associations between questionnaire scores, or dimensions, (controlled for IQ, age and gender) with 

confidence or action.
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Figure 2.3. Associations between questionnaire scores, or dimensions, 

(controlled for IQ, age and gender) with confidence or action. AD: anxious-

depression, CIT: compulsive behaviour and intrusive thought, SW: social withdrawal.  

(a) Associations with confidence rating on each trial. Most of the questionnaires 

scores were positively associated with confidence. However, refactoring into 

transdiagnostic dimensions revealed previously obscured bidirectional associations. 

AD was linked to decreased confidence, while CIT was linked to increased 

confidence.  

(b) Associations with action updates (i.e. bucket movement from one trial to the next). 

Only social anxiety was associated with an increased tendency to move the bucket, 

and this was similarly captured by, and specific to, the SW dimension.  

The Y-axes shows the percentage decrease in the size of the confidence or action 

update as a function of 1 standard deviation increase of questionnaire/dimension 

scores. Error bars denote standard errors. op < 0.05, oop < 0.01 uncorrected, *p < 

0.05, **p < 0.01, ***p < 0.001. Results are Bonferroni corrected for multiple 

comparisons over the number of psychiatric independent variables investigated. 
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Confidence in compulsivity is less sensitive to unexpected outcomes, 

environment uncertainty and positive feedback. The previous analyses suggest 

that confidence in compulsive individuals is both inflated and decoupled to 

behaviour. To understand the mechanism behind this, we tested the extent to which 

confidence estimates were sensitive to multiple factors that should drive belief-

updating. Specifically, prior work has shown that trial-wise adjustments in behaviour 

are influenced by 1) information gained from the most recent change in particle 

location (PEb; model prediction error), 2) surprising large particle location changes 

owing to change-points (CPP; change-point probability) and 3) uncertainty of one’s 

belief about the particle landing location distribution mean (RU; relative uncertainty) 

(McGuire et al., 2014). To separate the contributions of these factors, we computed 

the three normative parameters with a quasi-optimal Bayesian model (McGuire et 

al., 2014; Nassar et al., 2010, 2016; Vaghi et al., 2017) (see Methods) to the 

sequence of particle locations experienced by each participant.  

 

We analysed trial-wise confidence using regression models with these parameters 

including a categorial Hit regressor (previous trial was a hit or miss), and controlled 

for age, gender and IQ. Overall, confidence was influenced by PEb, CPP, RU and 

Hit (Supplemental Table A.I.S2). The CIT symptom dimension was associated with 

a significantly diminished influence of CPP (β = 0.05, SE = 0.01, 95% CI [0.03, 0.08], 

p < 0.001, corrected), RU (β = 0.05, SE = 0.01, 95% CI [0.03, 0.07], p < 0.001, 

corrected) and Hit (β = -0.03, SE = 0.01, 95% CI [-0.05, -0.01], p = 0.003, corrected) 

on confidence (Figure 2.4 and Supplemental Figure A.I.S5a). In other words, 
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confidence estimates in CIT were less sensitive to unexpected outcomes, the 

uncertainty of the true distribution mean and whether the previous particle was 

caught (i.e. correct trial). These results suggest that confidence in highly compulsive 

individuals is not only inflated, it is also disconnected to several sources of 

environmental evidence. Interestingly, the failures in utilizing evidence do not 

explain away overall inflated confidence observed in CIT (β = 6.78, SE = 1.02, 95% 

CI [4.79, 8.76], p < 0.001, corrected), suggesting these are at least partially distinct 

metacognitive failures. There were no associations between AD or SW and the 

extent to which evidence influenced confidence (Figure 2.4). 
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Figure 2.4. Regression analyses of trial-wise confidence and action 

adjustments with questionnaire scores/dimensions, controlled for age, IQ and 

gender.
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Figure 2.4. Regression analyses of trial-wise confidence and action 

adjustments with questionnaire scores/dimensions, controlled for age, IQ and 

gender. Predictors for confidence and action update regressions include model 

parameters PEb (model prediction error), CPP (change point probability), RU 

(relative uncertainty) and Hit (previous trial was a hit). They are indicated at the top 

of the figure for each column inset. Each questionnaire score was examined in a 

separate regression, whereas dimensions were included in the same model (AD: 

anxious-depression, CIT: compulsive behaviour and intrusive thought, SW: social 

withdrawal). Error bars denote standard errors. The Y-axes indicate the percentage 

change in the size of the model parameter on confidence or action update effect as 

a function of 1 standard deviation of questionnaire/dimension scores. op < 0.05, oop 

< 0.01 uncorrected, *p < 0.05, ***p < 0.001. Results are Bonferroni corrected for 

multiple comparisons over the number of psychiatric independent variables 

investigated. See also Supplemental Table A.I.S3 and Figure A.I.S5.  
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Action updates in compulsivity respond appropriately to evidence. Using the 

same approach described for confidence, trial-wise action adjustments were 

influenced by all model parameters (Supplemental Table A.I.S2). In contrast to 

confidence, CIT was not linked to changes in the influence of any of the parameters 

on action (Figure 2.4 and Supplemental Figure A.I.S5b). SW was related to a 

significant increased influence of PEb, suggesting that individuals high in this trait 

had an increased tendency to update their action with every new outcome (β = 0.06, 

SE = 0.02, 95% CI [0.02, 0.09], p < 0.05, corrected) (Figure 2.4). There were no 

associations with AD. Additional analyses in Appendix I show that when 

demographics are not controlled for, some apparent associations between action-

updating and compulsivity emerge that correspond to those reported previously in 

OCD (Vaghi et al., 2017) (Supplemental Figure A.I.S7).
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Discussion 

In this study, we demonstrated that a breakdown in the relationship between explicit 

belief (confidence) and behaviour is associated with a transdiagnostic psychiatric 

dimension—compulsive behaviour and intrusive thought (CIT). This decoupling 

arises from abnormalities in belief, rather than behaviour. Individuals high in CIT 

exhibited overall inflated confidence estimates and failures in utilising unexpected 

outcomes, belief uncertainty and positive feedback to inform their confidence levels 

appropriately. In contrast, action-updating in response to these factors did not differ 

as a function of CIT severity. Our findings suggest a dysfunctional metacognitive 

mechanism in compulsivity that implicates difficulty in updating the explicit model of 

the world in response to various sources of evidence. 

 

Existing models of compulsivity propose that deficits in goal-directed control leave 

individuals vulnerable to establishing compulsive habits (Gillan & Robbins, 2014). 

Supporting evidence primarily come from behavioural tests, where OCD patients 

(and other compulsive disorders) have difficulty exerting control over well-trained 

habits when motivations change (i.e. a devaluation test) (Ersche et al., 2016; Gillan 

et al., 2011; Gillan, Apergis-Schoute, et al., 2015; Gillan, Otto, et al., 2015). Other 

tasks have shown that compulsive patients have deficits utilizing a world model to 

make choices prospectively (even when habits are not present), relying instead 

solely on reinforcement (i.e. feedback) to direct choice (Gillan, Morein-Zamir, Kaser, 

et al., 2014; Voon et al., 2015). Our current finding, that high compulsive individuals 

fail to update their world model in response to several types of evidence, is an 
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important extension of this literature. The challenge facing compulsive individuals 

has until now been presumed to be the implementation of the model rather than its 

generation and/or maintenance (Gillan & Robbins, 2014). This implicates not just 

our understanding of compulsive disorders, but also their treatment. Recent work 

has shown that metacognitive skills can be improved though adaptive training 

(Carpenter et al., 2019); there may be scope for trialling these treatments for 

psychiatric populations where compulsivity is an issue. 

 

Confidence was not just unresponsive to various factors underlying learning, it was 

also inflated in compulsive individuals. This finding replicates prior work using this 

same transdiagnostic methodology that examined confidence in the context of 

perceptual decision-making (Rouault et al., 2018), showing elevated confidence in 

compulsivity extends to reinforcement learning—which is of course highly relevant 

for the behavioural aspects of compulsivity. However, this finding of increased 

confidence in compulsivity may seem at odds with prior research that overall 

suggests a decrease of confidence in OCD (Hoven et al., 2019). Critically, these 

studies have primarily been conducted with patient versus control comparisons and 

with respect to confidence in memory, rather than decision-making.  

 

There are several factors that are important to consider as this field progresses. 

Firstly, many memory tasks have not controlled for differences in performance in the 

way that tasks in the perceptual/reinforcement learning domains have been able to, 

which introduces a confound to interpretation (Fleming & Lau, 2014). If subjects 
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perform worse at the memory task, untrue conclusions about under-confidence can 

arise. This is the case in some, but not all, tasks that have studied confidence in 

memory in OCD. Secondly, it has been demonstrated that metacognition is not a 

unitary phenomenon; there is specialisation in distinct brain regions for confidence 

in perceptual versus memory domains (Fleming et al., 2014). We therefore might 

reasonably expect different patterns of dysfunction in OCD, depending on the 

domain under study. Finally, and perhaps most importantly, these prior studies are 

based on group comparisons (usually patient versus control) and cannot account for 

the influence of co-morbid symptomatology (e.g. depression and anxiety) on 

confidence. Given depression is associated with decreases in confidence, the 

confluence of these symptoms might serve to mask the true direction of the 

relationship between compulsivity and confidence. 

 

In instances when confidence diverges from action, prior work has suggested 

confidence estimates may be corrupted by noise, internal states or a continued/lack 

of evidence processing (Fleming & Daw, 2017; Meyniel et al., 2015). Coupled with 

the finding that confidence is less informed by several sources of evidence in high 

compulsive individuals, it is possible that inflated confidence in compulsivity 

observed here arose through some unmodeled form of information processing. In 

contrast, we found that actions were updated normally in response to feedback in 

high compulsive individuals, which accords with prior work showing that basic 

reinforcement learning in compulsive patient groups (i.e. ‘model-free’ learning) is 

intact (Gillan et al., 2016; Voon et al., 2015). That said, a previous study using this 
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task found increased action-updating tendencies in OCD (Vaghi et al., 2017). Here, 

the discrepancy does not appear to be explained by the superiority of a 

transdiagnostic approach per se, but our ability to control for some demographic 

confounds (see Supplemental Figure A.I.S7). Instead, we found that social 

withdrawal (SW) was associated with a higher sensitivity to new information affecting 

action. Though this result was not hypothesized, it aligns with prior research 

suggesting that socially anxious people engage in greater performance monitoring 

(Judah et al., 2016) and have higher sensitivity to learning from feedback (Khdour 

et al., 2016). 

 

Beyond the specific results of this study with respect to confidence and compulsivity, 

our data highlight the benefit of transdiagnostic dimensions over traditional modes 

of phenotyping. When we examined questionnaires that are ubiquitous but rarely 

compared to one another in clinical research, we found strikingly non-specific 

patterns of association with task variables. For example, all nine questionnaires 

showed an association with action-confidence coupling in the same direction (6/9 

surviving strict correction). In contrast, the compulsive dimension was the only 

transdiagnostic dimension to show an association. In addition to resolving issues 

with collinearity across questionnaires, this approach also resolves issues 

associated with the heterogeneity within them. For example, severity of neither 

depression nor anxiety was associated with decreases in confidence using a 

standard clinical questionnaire, but the anxious-depression (AD) dimension was. In 

comparison to work with diagnosed patients, the benefits of the transdiagnostic 
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approach are the same. Prior work using this task found no difference in OCD 

patients’ mean confidence ratings compared to healthy controls (Vaghi et al., 2017), 

while we found a strong a reproducible association between CIT and inflated 

confidence and AD and diminished confidence (Rouault et al., 2018), at least in the 

context of decision-making. Given that OCD is frequently co-morbid with anxiety 

disorders (over 75% (Ruscio et al., 2010)), which has an opposing relationship to 

confidence, it is no surprise that differences between OCD patients and controls are 

obscured when transdiagnostic dimensions are not considered. Together, these 

data suggest that transdiagnostic phenotyping may, at least in some domains, 

provide a closer fit to underlying brain processes than DSM distinctions. 

 

This study was not without limitation. Our study was conducted online, thus 

experimenter control of the testing environment was virtually non-existent. Prior 

studies have however shown that cognitive data collect online, albeit noisier, is valid 

(Crump et al., 2013). Similarly, self-report psychiatric scores are on-par with the 

general population (Shapiro et al., 2013) and relationships between cognition and 

clinical measures are mirrored across testing modalities (Gillan et al., 2016; 

Snorrason et al., 2016). Additionally, as the task was adapted for web-based testing, 

response navigation was controlled by keyboard presses (right and left response 

keys to direct clockwise and counter-clockwise rotations) and not a rotor controller 

as in Vaghi et al. (Vaghi et al., 2017), which could plausibly feel less natural and 

thus increase noise in spatial update measure. However, we were able to reproduce 

basic main effects of model parameters on action from Vaghi et al., suggesting that 
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the different response modality did not affect our ability to study action updating 

behaviour. We observed similar basic main effects of model parameters on action 

updating as in the original paper (Supplemental Table A.I.S2). With respect to the 

psychiatric dimensions, we not only reproduced the factor structure from a prior 

paper with our current data (Supplemental Figure A.I.S6), we used the factor 

weights from this prior publication (Gillan et al., 2016) to transform raw questionnaire 

scores into transdiagnostic dimensions for analysis. This ensured independence 

and underscores the robustness and reproducibility of these dimensions and their 

association to cognition.  

 

The extent to which these results are applicable to diagnosed patients is not 

something we can directly address here. However, it is notable that we replicated 

the association between OCD symptoms and action-confidence decoupling 

observed in a clinical sample that were tested in-person (Vaghi et al., 2017). The 

same applies to goal-directed planning, which is both deficient in patients tested in-

person (Gillan et al., 2011) and correlated with OCD symptoms in the general 

population tested online (Gillan et al., 2016; Snorrason et al., 2016). Notably, recent 

work in a mixed generalised anxiety disorder and OCD patient sample that were 

tested online found that goal-directed deficits were more strongly associated with 

the compulsivity dimension than OCD diagnosis status, underscoring the 

importance of transdiagnostic methods for delineating specific associations between 

cognition and clinical phenomenology that can be masked when examining 

diagnostic status alone (Gillan et al., 2019). Future research is needed to investigate 
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if the association between inflated confidence and compulsivity is similarly evident 

in diagnosed patients, tested in-person. More concerted, multi-centre efforts are 

required to achieve the large samples necessary to undertake this work, if it is to 

take place in-person rather than online. 

 

To conclude, we highlighted how a transdiagnostic methodology can be crucial for 

uncovering specific associations between pathophysiology and clinical symptoms. 

This method has several strengths; it directly addresses the issue of psychiatric co-

morbidity, helps us to achieve higher statistical power and thus promotes 

reproducibility, and makes research faster, more efficient and even more 

representative (Gillan & Daw, 2016). The definition of compulsivity employed here 

was generated in an independent study and is not intended to be fixed or final. 

Rather, its application to this independent dataset is intended to show the general 

potential that transdiagnostic approaches have for dealing with the issues of co-

morbidity and individual differences faced both in research and practice in 

psychiatry. We used this method to show that compulsive behaviour and intrusive 

thought is associated with reduced action-confidence coupling, inflated confidence 

and diminished influence of evidence on confidence estimates. Our findings suggest 

that compulsivity is linked to problems in developing an explicit and accurate model 

of the decision space, and this might contribute to broader class of problems these 

individuals face with goal-directed planning and execution. 
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Chapter 3: Encephalographic (EEG) correlates of reduced 

model-based control in compulsivity 

 

Introduction 

Compulsive behaviour manifests as actions that are autonomous, out-of-control and 

repetitive, often leading to adverse and functionally impairing outcomes (Robbins et 

al., 2012). This symptomology is characteristic of psychiatric disorders like 

obsessive-compulsive disorder (OCD) and addiction, and is thought to arise from an 

imbalance between the two modes of action control (Gillan & Robbins, 2014): (i) 

goal-directed learning that links actions to outcomes and enables adaptive 

behaviour (Balleine & Dickinson, 1998) and (ii) rigid habit formation that relies on 

reflexive stimulus-response mechanisms to guide decision making (Balleine & 

O’Doherty, 2010).  

 

An accumulation of evidence suggests that the dominance of habits in compulsivity 

may result entirely from impairments in goal-directed control (Gillan & Robbins, 

2014). Imaging work has shown that behavioural insensitivity to rapid changes in 

outcome value (“outcome devaluation”) and self-reported habitual urges in OCD are 

associated with the hyperactivation of the caudate nucleus, a brain region 

associated with goal-directed control, but not habit-related regions (Gillan et al., 

2015a). OCD patients are also poorer in prospective planning in making goal-

oriented decisions compared to controls (Gillan et al., 2014). This view is further 

supported by studies utilising the two-step reinforcement task which computationally 
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frames goal-directed control as ‘model-based’ learning according to the extent that 

individuals use state-action relationships to guide choice (Daw et al., 2005, 2011). 

Individuals with OCD and other compulsive disorders are impaired in model-based 

planning (Voon et al., 2015). Building on this work, evidence suggests that 

compulsivity is a transdiagnostic dimension (rather than a category of mental illness) 

which manifests in failures in goal-directed control both in the general population 

(Gillan et al., 2016), as well as in diagnosed patients (Gillan et al., 2019).  

 

Despite these advances in our understanding of the nature of the deficits 

experienced by compulsive individuals, it remains unclear which component of goal-

directed control is impaired in compulsivity. Goal-directed behaviour is unarguably 

a multifaceted cognitive capacity; it depends upon several concurrent functions that 

include: (i) the construction and maintenance of an internal model (i.e. a 

representation of the environment, and more specifically, knowledge of relevant 

action-outcome relationships and state-state transitions), which is a pre-requisite for 

(ii) the implementation of this model in behaviour through prospective planning. 

Goal-directed failures could theoretically stem from problems in mechanisms 

underlying either component. 

 

However, the general framing in the literature to date has focused largely on 

implementation; e.g. arbitration of the balance between competing habitual versus 

goal-directed decision systems which is suspected to occur at the time of choice 

(Gruner et al., 2016; Lee et al., 2014). This postulate has been supported in part by 
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the observation that OCD patients exhibit failures in devaluation sensitivity, even 

when they have accurate explicit knowledge of simple action-outcome contingencies 

(Gillan, Morein-Zamir, Kaser, et al., 2014). However, other studies have revealed 

problems in learning action-outcome associations in OCD and addiction alike using 

outcome devaluation paradigms that require subjects to learn more numerous and 

taxing contingency structures (Ersche et al., 2016; Gillan et al., 2011). Additionally, 

this lack of action-outcome contingency knowledge is correlated with devaluation 

sensitivity in OCD (Gillan et al., 2011).  

 

Although lacking a direct link to goal-directed behaviour, studies of metacognitive 

processes in compulsive individuals have begun to mount evidence that rather than 

problems in implementation per se, the status of the internal model may be 

compromised in compulsivity. For example, in a perceptual decision making task, 

individuals high in compulsivity overall exhibit greater confidence in their decisions, 

but critically also showed a trend towards poorer accuracy of this mental model of 

their own performance—that is, they were less able to detect when they were correct 

versus incorrect (Rouault et al., 2018). In the previous chapter, we probed the link 

between reinforcement learning and metacognition. Notably, we found that 

compulsivity was again linked to inflated confidence, but also stark impairments in 

the ability to update confidence estimates in light of feedback (Seow & Gillan, 2020). 

This suggests that in compulsivity, goal-directed deficits may not simply reflect 

failures in ‘cognitive control’, or arbitration between decision systems, but stem from 
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issues in acquiring and maintaining an accurate internal model of the environment—

upon which goal-directed control is predicated. 

 

The present study aimed to test if compulsivity is characterised by a disruption in 

constructing and maintaining the mental model essential for goal-directed control or 

simply in the use/implementation of it. To do this, we used electroencephalography 

(EEG) to concurrently track neural responses as 192 subjects performed a two-step 

reinforcement learning task (Daw et al., 2005, 2011). We conducted single-trial 

regression analyses to characterise candidate neural correlates of the 

representation and implementation of the mental model and tested if these were 

linked to individual differences in compulsivity.
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Methods  

Power estimation. We determined a minimum sample size from a prior study 

that investigated the association of goal-directed control with OCI-R scores from 

non-clinical participants tested in-person (r = -0.26, p < 0.05) (Snorrason et al., 

2016). The effect size suggested that N = 150 participants were required to 

achieve 90% power at 0.05 significance. Our final sample was larger than this to 

achieve the required power for a simultaneous investigation of other data 

collected from the same subjects; which is unrelated to the present study and 

reported in chapter 4 (Seow et al., 2019). 

 

Participants. N = 234 participants were tested, of whom 138 were female 

(58.97%) with ages ranging from 18 to 65 (mean = 31.42, standard deviation 

(SD) = 11.48) years. Majority of the participants were from the general public, 

recruited via flyers and online advertisements, while a tiny subset (N = 8) were 

patients from St. Patrick’s Mental Health hospital who were included to enrich 

our sample in self-report mental health symptoms. All participants were ≥18 

years (with an age limit of 65 years) and had no personal/familial history of 

epilepsy, no personal history of neurological illness/head trauma nor personal 

history of unexplained fainting. Subjects were paid €20 Euro (€10/hr) upon 

completion of the study. All study procedures were approved by Trinity College 

Dublin School of Psychology Research Ethics Committee. 

 

Procedure. Before presenting to the lab for in-person EEG testing, participants 

completed a brief at-home assessment via the Internet. They provided informed 

electronic consent, and submitted basic demographic data (age, gender), 
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information about any medication they might be taking for a mental health issue 

and completed a set of 9 self-report psychiatric questionnaires (see Self-report 

psychiatric questionnaires, transdiagnostic dimensions & IQ). During the 

experimental EEG session, participants completed two tasks: the modified 

Eriksen flanker task (Eriksen & Eriksen, 1974) and the two-step reinforcement 

learning task (Daw et al., 2005, 2011). Data from the former task data has no 

bearing on the results presented here (Seow et al., 2019), with the exception that 

we reported the basic behavioural association with compulsivity and model-

based planning as a control measure in that paper. Once participants had 

completed both tasks, they completed a short IQ evaluation before debriefing. A 

subset of the participants (N = 110, 47%) completed a short psychiatric interview 

(Mini International Neuropsychiatric interview English Version 7.0.0; M.I.N.I.) 

(Sheehan et al., 1998) before the experimental tasks. Further medication and 

diagnosis details of the sample are in A.II. Supplemental Methods. 

 

Participant exclusion criteria. Several exclusion criteria were applied to ensure 

data quality. Participants were excluded if they failed any of the following on a 

rolling basis: Participants whose/who (i) EEG data were incomplete (N = 5) (i.e. 

recording was prematurely terminated before the completion of the task) or 

corrupted (N = 2), (ii) EEG data which contained excessive noise (i.e. >95% EEG 

epochs from the individual failing epoch exclusion criteria, see EEG recording 

& pre-processing) (N = 4), (iii) responded with the same key in stage one >90% 

(n > 135 trials) of the time (N = 10), (iv) probability of staying after common-

rewarded trials was significantly worse than chance, defined as <5% probability 

of fitting a binomial distribution with 50% (chance) probability and the total 
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number of common-rewarded trials experienced by each subject (N = 11), (v) 

missed more than 20% of trials (n > 30 trials) (N = 3), and (vi) incorrectly 

responded to a “catch” question within the questionnaires: “If you are paying 

attention to these questions, please select ‘A little’ as your answer” (N = 7). 

Combining all exclusion criteria, 42 participants (17.95%) were excluded. N = 

192 participants were left for analysis (115 females (59.90%), between 18-65 

ages (mean = 31.55, SD = 11.75 years).  

 

Two-step reinforcement learning task. We used the two-step reinforcement-

learning task (Daw et al., 2005, 2011) to assess individual differences in model-

based planning. Participants had to navigate two stages to learn reward 

probabilities associated with options presented, with the main goal of earning 

rewards. The paradigm was presented with a cover story (Figure 3.1). In the first 

stage, participants had to choose between two spaceships, each with a higher 

probability (‘common’ transitions: 70%) of leading to one of two planets (second 

stage states, represented by coloured blocks) that sometimes lead to the 

alternative (‘rare’ transitions: 30%) planet. Once on the planet, the participants 

then had to choose between two aliens to be probabilistically rewarded with 

‘space treasure’, or unrewarded with ‘space dust’. Each alien, a total of four over 

two planets, had a unique probability of receiving ‘space treasure’, which drifted 

slowly and independently over time (always >0.25 or <0.75). Individuals 

performing goal-directed ('model-based') learning would make decisions based 

on the history of rewards and the transition structure of the task, while individuals 

performing basic temporal difference ('model-free') learning would simply make 

decisions solely on the history of rewards obtained. 
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The sequence of events was presented in the same manner as a prior study that 

conducted the two-step task in the EEG (Eppinger et al., 2017) except with 

differing transition probabilities (70/30% here versus 60/40% and 80/20%) and 

time given to make a choice (1500ms here versus 2000ms) (Figure 3.1). On 

each trial, participants were first presented with a fixation cross for 500ms, and 

then shown a choice between two spaceships. They had 1500ms to respond; 

after which, an outline over the chosen option would indicate their choice 

(feedback) for 500ms. A fixation cross was shown for 500ms before transition, 

where the transitioned planet was shown (a blank colour block) for 1000ms. Two 

aliens of that particular planet would then appear, with 1500ms for choice, with 

feedback of the chosen option subsequently shown for 500ms. Each of the aliens 

led to a probabilistic reward with a picture of ‘space treasure’, or no reward with 

‘space dust’, that was presented for 1000ms. Responses were indicated using 

the left (‘Q’) and right (‘P’) keys. Colour of blocks behind rockets and those 

representing planets were randomised across all participants. Participants 

performed two blocks of 75 trials, i.e. 150 trials in total. Prior to the experimental 

task, participants completed a tutorial that explained the key concepts of the 

paradigm; the probabilistic association between the aliens and rewards (10 trials) 

and the probabilistic transition structure of rockets to planets (10 trials). After this 

practice phase, they had to answer a 3-item basic comprehension test regarding 

the key rules of the task. If participants failed to answer all questions correctly, 

the experimenter would reiterate the key concepts of the paradigm to the 

participant, allowing clarification.
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Figure 3.1. Two-step reinforcement learning task.
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Figure 3.1. Two-step reinforcement learning task. Paradigm consists of two 

stages where participants take a ‘rocket’ that has a common (70%) or rare (30%) 

transition to one of two second stage ‘planets’ (states). ‘Aliens’ on these ‘planets’ 

each have a unique probability of reward (‘space treasure’ (reward) or ‘space dust’ 

(non-reward)) that drifts slowly throughout the entire experiment. Participants have 

to take into consideration the task transition structure and their history of rewards to 

make choices that maximise gain. The sequence of events as presented for EEG is 

the same as that of Eppinger et al. (2017), except they included a manipulation of 

transition probabilities in their study (comparing 60/40% to 80/20%) and used a 

longer choice window (2000ms).
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Behavioural data pre-processing. Individual missed trials and trials with very fast 

(<150ms) reaction times at the first stage (indicating inattention or poor responding) 

were excluded from analyses. A total of 1082 trials (3.76%) were removed (per 

participant mean = 5.64 (3.76%) trials) across participants. 

 

Self-report psychiatric questionnaires, transdiagnostic dimensions & IQ. In 

order to characterise our sample with a previously defined transdiagnostic 

dimension of compulsivity (Gillan et al., 2016), participants completed 9 self-report 

questionnaires (which were fully randomized) assessing: alcohol addiction using the 

Alcohol Use Disorder Identification Test (AUDIT) (Saunders et al., 1993), apathy 

using the Apathy Evaluation Scale (AES) (Marin et al., 1991), depression using the 

Self-Rating Depression Scale (SDS) (Zung, 1965), eating disorders using the Eating 

Attitudes Test (EAT-26) (Garner et al., 1982), impulsivity using the Barratt Impulsivity 

Scale (BIS-11) (Patton et al., 1995), obsessive-compulsive disorder (OCD) using the 

Obsessive-Compulsive Inventory - Revised (OCI-R) (Foa et al., 2002), schizotypy 

scores using the Short Scales for Measuring Schizotypy (SSMS) (Mason et al., 

2005), social anxiety using the Liebowitz Social Anxiety Scale (LSAS) (Liebowitz, 

1987) and trait anxiety using the trait portion of the State-Trait Anxiety Inventory 

(STAI) (Spielberger et al., 1983). A proxy for IQ was also collected using the 

International Cognitive Ability Resource (I-CAR) (Condon & Revelle, 2014) sample 

test which included 4 item types of three-dimensional rotation, letter and number 

series, matrix reasoning and verbal reasoning (16 items total). See Supplemental 
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Figure A.II.S1 and Table A.II.S1 for more details of the distribution spread, 

correlations and reliability of the questionnaire scores. 

 

We used weights derived from a previous study (Gillan et al., 2016) to transform the 

raw scores of the 209 individual items from the 9 questionnaires into dimension 

scores (‘Anxious-Depression’ (AD), ‘Compulsive Behaviour and Intrusive Thought’ 

(CIT; ‘compulsivity’), and ‘Social Withdrawal’ (SW)). This was because our sample 

size had too low a subject-to-variable ratio (N = 192) for de novo factor analysis, as 

compared to the original study (N = 1413). Prior studies, including the previous 

chapter, have demonstrated the stability of the factor structure in new data (Rouault 

et al., 2018; Seow & Gillan, 2020). Consistent with prior work, the resulting 

dimension scores were moderately intercorrelated (r = 0.33 to 0.42) (Supplemental 

Table A.I.S2).  

 

Quantifying model-based learning. Model-based estimates were estimated using 

mixed-effects models written in R, version 3.6.0 via RStudio version 1.2.1335 

(http://cran.us.r-project.org) with the glmer() function from the lme4 package, with 

Bound Optimization by Quadratic Approximation (bobyqa) with 1e5 functional 

evaluations. The basic model tested if participants’ choice behaviour to Stay or 

switch relative to previous choice (stay: 1, switch: 0) was influenced by the previous 

trial’s Reward (rewarded: 1, unrewarded: -1), Transition (common (70%): 1, rare 

(30%): -1) and their interaction (Supplemental Figure A.II.S2). Within-subject 

factors (the intercept, main effects of reward, transition, and their interaction) were 
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taken as random effects (i.e. allowed to vary across participants). In R syntax, the 

model was: Stay ~ Reward * Transition + (Reward * Transition + 1 | Subject). The 

extent to which model-based planning contributed to choice was indicated by the 

presence of a significant interaction effect between Reward and Transition (MB). 

Split half-reliability, where the data were split into two subsets (even versus odd 

trials) and correlated and adjusted with Spearman-Brown prediction formula, was 

estimated for model-based planning. 

 

To test if the compulsive dimension was associated with goal-directed learning 

deficits, we included the total scores of all three dimensions (AD: anxious-

depression, CIT: compulsive behaviour and intrusive thought, SW: social 

withdrawal) as z-scored fixed effect predictors into the basic model described above. 

The extent to which compulsivity is related to deficits in goal-directed learning was 

indicated by the presence of a significant negative Reward*Transition*CIT 

interaction. Age and IQ tend to covary with model-based learning (Gillan et al., 

2016); control analyses presented in A.II. Supplemental Methods demonstrate that 

these variables did not drive any of the results presented. 

 

Sensitivity to task structure: Reaction time (RT). Recent work has shown that 

one effective way to index an individual’s sensitivity to the structure of the task is via 

reaction times (RT) (Shahar et al., 2019). The logic is that someone who is aware of 

the task structure should, by right, expect a common transition (and the associated 

second stage choice options). As such, when a rare transition occurs, they require 
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more time to respond. This is presumably because they are relatively unprepared 

for the choice options presented to them following a rare transition. This appears to 

be the case; individuals with greater model-based planning have been shown to 

make faster second stage choices after common transitions, compared to rare 

transitions (Shahar et al., 2019). To test this, we conducted a mixed effect linear 

regression of transition type (Transition (common: -1, rare: 1) on second stage 

reaction time (S2-RT). In the syntax of R, the model was: S2-RT ~ Transition + 

(Transition + 1 | Subject). We asked if compulsivity was associated with a reduction 

in RT sensitivity to the transition structure by including the total scores of the three 

dimensions (AD, CIT, SW) as z-scored fixed effect predictors into the original model 

above.   

 

EEG recording & pre-processing. EEG was recorded continuously using an 

ActiveTwo system (BioSemi, The Netherlands) from 128 scalp electrodes and 

digitized at 512 Hz. The data were processed offline using EEGLab (A. Delorme & 

Makeig, 2004) version 14.1.2 in MATLAB R2018a (The MathWorks, Natick, MA). 

Data were imported using A1 as a reference electrode, then downsampled to 250 

Hz and band-pass filtered between 0.05 and 45 Hz. Bad channels were rejected 

with a criterion of 80% minimum channel correlation. All removed channels were 

interpolated, and the data were re-referenced to the average. To remove ocular and 

other non-EEG artefacts, ICA was run with runica, pca option on, and its 

components were rejected automatically with Multiple Artifact Rejection Algorithm 

(MARA) (Winkler et al., 2011), an EEGLab toolbox plug-in, at a conservative criterion 
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of >90% artefact probability. For all EEG analyses, other non-specific artefacts were 

removed after epoching using a criterion of any relevant electrode examined 

showing a voltage value exceeding ±100µV. If participants had a rate of >95% of 

total epochs failing this criterion, their data were excluded from all analyses (N = 4 

as reported in Participant exclusion criteria). Each remaining participant had 

mean = 147.46 (SD = 2.98) epochs left. 

 

Time-frequency analysis. EEG data were epoched for both first and second stages 

of the task for time-frequency analyses (alpha (9-13Hz) and theta (4-8Hz) power) 

detailed in the subsequent sections: -1700ms to 2200ms stimulus-locked at the first 

stage (rockets) as well as -2000ms to 3500ms stimulus-locked at second stage 

(aliens). Time-frequency calculations were computed using custom-written MATLAB 

(The MathWorks, Natick, MA) routines. The EEG time series in each epoch was 

convolved with a set of complex Morlet wavelets, defined as a Gaussian-windowed 

complex sine wave: e(-i2*time*f) e(-time^2/2σ^2 ). Where i is the complex operator, time 

is time, f is frequency, which increased from 2 to 40 Hz in 40 logarithmically spaced 

steps. σ defines the cycle (or width) of each frequency band and was set to 

cycle/2πf, where cycle increased from 4 to 12 in 40 logarithmically spaced steps in 

accordance with each increase in frequency step. The variable number of cycles 

leverages the temporal precision at lower frequencies and increases frequency 

precision at higher frequencies. From the resulting complex signals of every epoch, 

we extracted estimates of power. Power is defined as the modulus of the resulting 

complex signal: Ζ(time) (power time series: ρ(time) = real[z(time)]2 + imag[z(time)]2). 
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Stimulus-locked first stage epoch was baselined corrected to the average frequency 

power from -400ms to -100ms (corresponding to first stage fixation) while for 

stimulus-locked second stage epoch used -1400ms to -1100ms (corresponding to 

second stage fixation, before presentation of the coloured squares (planets)) as the 

baseline. For single-trial estimates of frequency power, as baselining with division 

induces spurious power fluctuations due to trial-to-trial fluctuations, power at each 

individual trial was baselined corrected with the linear subtraction method with its 

corresponding baseline activity: (power(time) – power(baseline)), at each frequency, 

at each channel. For visualisation purposes in the figures presented, power was 

normalized by conversion to a decibel (dB) scale: 

(10*log10[power(time)/power(baseline)]). 

 

Single-trial analyses with EEG signals. All analyses described below were 

conducted with mixed effects models (regression model equations are in A.II. 

Supplemental Methods). For every single-trial analysis, we excluded single-trial 

EEG estimates which were within ±5 SD away from the mean of the group. A 

maximum of <0.79% (n = 215) of the total trials across all participants were excluded 

for any measure. The regression model-based estimate (MB) was used as the 

individual between-subjects model-based estimate in all EEG analyses. 

 

Sensitivity to task structure: P300 and transition type. The P300 component is 

a parietal positivity that occurs about 300ms after stimulus onset. Studies with odd-
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ball paradigms observe that the signal is sensitive to stimulus probability; P300 

amplitudes are larger as stimulus probability decreases i.e. gets more rare (Polich 

& Margala, 1997). Prior research in healthy humans thus hypothesised that the P300 

may be a marker of sensitivity to state-state transition knowledge on this two-step 

task, albeit inconsistent direction of effect was found across studies (Eppinger et al., 

2017; Sambrook et al., 2018; Shahnazian et al., 2019). However, the P300 

component is time-locked to choice commitment (Twomey et al., 2015) and as such 

the amplitude of the averaged stimulus-locked signal will be partly determined by 

RT variability. To circumvent this issue, we tested if the response-locked signal was 

associated to transition types. 

 

We first measured the P300 component at four parietal electrodes over the 

topography of the stimulus-locked peak (D16 (CP1), A3 (CPz), B2 (CP2), A4); 

Supplemental Figure A.II.S3). Data were epoched from -500ms to 1700ms relative 

to the onset of the second stage stimulus (aliens presented) and baselined corrected 

from -200ms to 0ms. Stimulus-locked single-trial P300 amplitudes were estimated 

as the mean of ±100ms around the individual’s averaged latency of their positive 

peak within a search window 250ms to 1000ms after stimulus onset. To eliminate 

amplitude biases owing to latency variances due to RT, we subsequently aligned 

the epochs (measured at A4, A5, A19 (Pz), A32, the response-locked peak; 

Supplemental Figure A.II.S5) to the time of choice response execution. The 

response-locked P300 amplitude was quantified as the mean amplitude -100ms to 

0ms before response. To investigate if the P300 was sensitive to rare versus 
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common transitions and whether this depended on model-based 

control/compulsivity, we regressed both stimulus- and response-locked P300 

measures against transition type Transition: rare: 1, common: 0) interacting with z-

scored model-based estimates (MB) or compulsivity (CIT, controlled for the other 

psychiatric dimensions AD and SW), taking Transition and the intercept as random 

effects.  

 

Sensitivity to task structure: Alpha power and transition type.  Neural 

oscillations are thought to play a role in orchestrating more distributed neural 

computations of the sort required in model-based planning and therefore might be 

better able to track sustained representations of the task’s transition structure than 

short-latency evoked-related potentials (ERPs) like the P300 (Makeig & Onton, 

2012). Alpha (9-13Hz) desynchronization (i.e. suppression) is associated with 

increases in BOLD activity in frontal cortical areas and is seen as a general marker 

of mental activity and attention (Laufs et al., 2003), which we reasoned might be 

modulated by the occurrence of unexpected state transitions in this task. Coupled 

with the fact that prior studies have found evidence for alterations in alpha power in 

OCD patients (Perera et al., 2019), we sought to test if alpha tracks transition 

structure of this task and if this is disrupted in compulsivity.  

 

Alpha power was measured at five occipital-parietal electrodes (A18, A19 (Pz), A20, 

A21, A31; surrounding A20 electrode; Supplemental Figure A.II.S6) in an epoch 

centered on the onset of the second stage stimuli (aliens) (see Time-frequency 
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analysis). Single-trial stimulus-locked alpha power estimates were measured as the 

mean power ±250ms around the average latency of the negative peak, specific for 

each individual, found within a search window 0ms to 1000ms after stimulus onset. 

We additionally obtained alpha power estimates quantified across four 1000ms 

rolling time bins by the mean amplitude within each time window. The time bins 

began from transition at -1000ms to 0ms locked to the stimulus (alien presentation), 

followed by three windows spanning choice to reward from 0ms to 1000ms, 1000ms 

to 2000ms, and 2000ms to 3000ms. The same approach of mixed effect models 

with P300 and transition type was used to examine the influence of model-based 

estimates/compulsivity on alpha power representation of rare versus common 

transitions, except for where Transition was coded differently (rare: -1, common: 1) 

for ease of interpreting the direction of interaction effects.  

 

Behavioural control: theta power during choice. Mid-frontal theta (4-8Hz) power 

is a well-established EEG signature of cognitive control (Cavanagh & Frank, 2014; 

Sauseng et al., 2010), and for example is associated with exerting control over the 

influence of ‘automatic’ Pavlovian biases (Cavanagh et al., 2013). Cognitive control 

is thought to be essential in supporting the utilisation of goal-directed behaviour over 

more automatic (and less prospective) modes of action selection (Otto et al., 2014). 

We therefore probed if increased mid-frontal theta at the first stage of the task, as 

the crucial time where subjects make model-based or model-free choices, would 

reflect greater model-based performance and show disruption in compulsivity. For 

theta power (4-8Hz), power estimates were measured at four a priori frontal midline 
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electrodes (C21 (Fz), C22, C23 (FCz), A1 (Cz); see Supplemental Figure A.II.S9) 

at the first stage (see Time-frequency analysis). The mean power ±250ms around 

the individual’s average latency of the positive peak found within a search window 

0ms to 500ms after stimulus onset was taken for every epoch. We tested if single-

trial theta power was associated with model-based estimates (MB) or to compulsivity 

(CIT, controlled for AD and SW) by taking them as z-scored main regressors against 

theta power. 

 

Specificity with psychiatric questionnaire scores versus transdiagnostic 

dimensions. Additionally, we visualised the advantages of utilising a 

transdiagnostic definition of compulsivity as opposed to examining single psychiatric 

questionnaires. We repeated the above time-frequency analyses (alpha and theta) 

with the individual total questionnaire scores (QuestionnaireScore, z-scored) 

replacing the three psychiatric dimensions (CIT, AD, SW) in their respective 

regression models detailed above. Separate mixed effects regression models were 

performed for each individual questionnaire as correlation across questionnaire 

scores ranged greatly from r = -0.09 to 0.79 as opposed to the transdiagnostic 

analysis where all three dimensions (that correlated moderately: r = 0.33 to 0.42) 

were included in the same model. 

 

Supplemental analyses. We also explored the association of model-based 

planning/compulsivity with (i) alpha power at the first stage and (ii) theta power and 
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transition type at the second stage. These analyses are reported in Figure A.II.S6 

and Figure A.II.S9 respectively. 
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Results 

Compulsivity and model-based planning. Regression analysis of choice 

behaviour on the two-step task revealed a significant interaction between Reward 

and Transition (β = 0.20, standard error (SE) = 0.03, p < 0.001), indicating clear 

evidence for model-based planning in this sample. Individual subject coefficients 

for this interaction term were extracted and used as an individual difference 

measure for EEG analysis. Note that this ‘model-based index’ had good split half-

reliability of r = 0.71. Consistent with prior work, there was also evidence for 

model-free learning, where subjects were more likely to repeat choices if they 

were followed by reward (main effect of Reward: β = 0.55, SE = 0.05, p < 0.001), 

and an overall tendency to repeat choices from one trial to the next (Intercept: β 

= 1.46, SE = 0.07, p < 0.001). Importantly, we found that individual differences in 

compulsivity and intrusive thought (hereafter: ‘compulsivity’) were associated 

with reduced goal-directed learning (β = -0.07, SE = 0.04, p = 0.05) (Figure 3.2a), 

while anxious-depression and social withdrawal were not.  
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Figure 3.2. Goal-directed control and compulsivity. a) Model-based control estimated by a logistic regression of choice behaviour 

with one-trial back reward and transition. Regressions were conducted in a model with all three dimensions: ‘anxious-depression’ 

(AD), ‘compulsivity and intrusive thought’ (CIT) and ‘social withdrawal’ (SW). Model-based control is reduced high compulsive 

individuals. b) Participants have on average a longer mean response time (RT) at second stage choice after a rare transition than a 

common one (t191 = 16.16, 95% Confidence Interval (CI) [79.85 102.05], p < 0.001). c) This RT difference between transition type 

(RT-Trans) is diminished in high compulsive individuals. For b), error bars denote standard deviation. For a) & c), error bars denote 

standard error. The Y-axes indicate the percentage change in goal-directed control/RT-Trans as a function of 1 standard deviation 

of psychiatric dimension scores. *p ≤ 0.05, ***p < 0.001. 
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Reaction time (RT) sensitivity to task structure. In line with recent work, we 

hypothesised that participants would have a slower RT after a rare versus 

common transition and that this difference would be greater in more model-based 

participants. Indeed, we found that participants have a slower mean RT for rare 

versus common trials after transition (β = 47.15, SE = 2.85, p < 0.001) (Figure 

3.2b). As expected, this effect (RT-Trans) was larger in those with higher levels 

of model-based control (β = 7.36, SE = 1.83, p < 0.001). Crucially, we found that 

this effect was reduced in high compulsive individuals (β = -8.02, SE = 3.19, p = 

0.01) (Figure 3.2c). This is, to our knowledge, the first evidence that compulsivity 

is associated with a deficit in distinguishing rare from common transitions, a 

fundamental constituent of the mental-model required to engage in model-based 

planning.  

 

P300 sensitivity to task structure. Previous studies found that stimulus-locked 

parietal positivity, like reaction time, was sensitive to the difference between rare 

and common transitions. Although this result has been inconsistent in direction, 

with some studies finding greater P300 amplitudes for rare versus common 

(Sambrook et al., 2018; Shahnazian et al., 2019) and another the opposite 

(Eppinger et al., 2017) we nonetheless thought this was a good place to start. 

We examined the second stage stimulus-locked P300 and found a significant 

main effect of transition type (β = 0.15, SE = 0.07, p = 0.03), consistent with 

Sambrook et al. (2018) and Shahnazian et al. (2019) whereby greater P300 

amplitude was observed after rare versus common transitions (Supplemental 

Figure A.II.S3). However, to our surprise, this differential rare versus common 

signal was not larger in individuals high in model-based planning (β = 0.07, SE = 
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0.08, p = 0.35) nor did it show any association to compulsivity (β = 0.09, SE = 

0.08, p = 0.24).  

 

However, reaction times may confound the amplitude of the stimulus-locked peak 

(Twomey et al., 2015), and it is possible that differences in the P300 effects 

previously found reflected an RT-based peak shift. When we repeated the 

analysis using response-locked P300 (which mitigates this issue), we found that 

the transition effect was no longer significant and its direction was reversed (-

100ms to 0ms) (β = -0.09, SE = 0.08, p = 0.23) (Supplemental Figure A.II.S5). 

Together with the lack of association with model-based planning, we concluded 

that the P300 may not provide the most reliable or sensitive measure of neural 

sensitivity to task structure. 

 

Alpha power sensitivity to task structure. As ERPs principally reflect activity 

changes that are short-lived and strictly time-locked to particular events, we also 

investigated the possibility that occipital-parietal alpha power would provide a 

more sensitive index of task transitions. Specifically, we examined if occipital-

parietal alpha power measured locked to the second stage stimulus was able to 

distinguish between rare and common transitions across a series of time bins in 

our task. This allowed us to ascertain not just if participants showed sensitivity to 

task structure following a transition, but for how long they sustained that 

representation. We found that alpha power was indeed able to differentiate 

transition types (β = 0.05, SE = 0.01, p < 0.001); occipital-parietal alpha was more 

suppressed after rare versus common transitions (Figure 3.3). Repeating the 

analysis with response-locked alpha also yielded a significant effect (β = 0.06, 
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SE = 0.01, p < 0.001) (Supplemental Figure A.II.S8). Unlike the P300, we found 

that over three rolling time bins beginning from the transition (planet) (-1000ms 

to 0ms: β = 0.04, SE = 0.02, p < 0.05) to the end of choice feedback (0ms to 

1000ms: β  = 0.04, SE = 0.01, p = 0.005; 1000ms to 2000ms: β = 0.05, SE = 

0.02, p = 0.01), individuals high in model-based control showed the largest alpha 

power differences between the two transition types (Figure 3.3). Importantly, this 

same signature was negatively related to compulsivity, with significant 

associations observed starting from the time of state transition until the response 

was made (-1000ms to -0ms: β = -0.06, SE = 0.02, p = 0.002; 0ms to 1000ms: β 

= -0.03, SE = 0.02, p = 0.05) (Figure 3.3). Consistent with RT findings, these 

data suggest that individuals high in compulsivity have a diminished 

representation of the transition structure of the task.  
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Figure 3.3. Stimulus-locked alpha power at transition. 
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Figure 3.3. Stimulus-locked alpha power at transition. Alpha power was 

measured across 4 time bins of 1000ms each separated by vertical dashed lines, 

starting from the transition (-1000ms) until after reward (2000ms). Top inset 

shows grand average second stage alpha power waveforms between rare and 

common transitions. Significance indicates a significant main effect of larger 

alpha depression for rare than common transitions in single trial analysis with the 

full sample. Lower insets indicate alpha power difference between transitions 

(common minus rare) comparing top/bottom 40th percentile (N = 77 per group) of 

participants grouped by model-based estimates (MB) or compulsivity (CIT). Black 

dashed lines show that alpha difference is enhanced in time bins 1-3 for more 

model-based participants, while diminished in time bins 1-2 for high compulsive 

individuals. Significance indicates a significant transition*MB/CIT effect from 

single-trial regressions of alpha power (with all participants) on transition type 

and MB/CIT in single trial analysis with the full sample. *p ≤ 0.05, **p < 0.01, ***p 

< 0.001. 
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Theta power as a marker of mental model implementation during choice. 

Moving beyond participants’ awareness of the transition structure of the task, we 

next tested for evidence for a more general disruption in cognitive control at the 

time of choice, assayed as theta (4-8Hz) power during the first stage choice—

the crucial time when model-based planning manifests in behaviour. We found 

that theta power was not significantly linked to model-based learning (β = 0.02, 

SE = 0.01, p = 0.11), but significantly lower theta was associated with individuals 

high in compulsivity (β = -0.03, SE = 0.01, p = 0.03) (Figure 3.4). Notably, greater 

theta power here was seen in participants who were more aware of state-state 

transitions (had larger differences in their RT after transition at second stage 

choice (RT-Trans)) (β = 0.03, SE = 0.01, p = 0.001). This suggests that those 

high in compulsivity may have deficits in the engagement of general cognitive 

control mechanisms when making their first stage choices which is linked to their 

awareness of transition types.  
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Figure 3.4. Stimulus-locked first stage theta power. Grand average waveforms of theta power comparing the top/bottom 40th 

percentile (N = 77 per group) individuals based on their model-based (MB)/compulsivity (CIT) estimates. Single trial analyses (with 

all participants) indicate high compulsive individuals exhibit a decrease in theta power (β = -0.03, SE = 0.01, p = 0.03). Directional 

effect of increased theta power for model-based control was non-significant (β = 0.02, SE = 0.01, p = 0.11). Shaded grey area 

visualises an approximate time window where theta power was estimated (±250ms around the individual’s average latency of the 

positive peak). *p < 0.05. 
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Alpha and theta modulations are specific to compulsivity. We additionally 

ascertained the advantage of using a transdiagnostic definition of compulsivity in 

our study. When we examined how well alpha power suppression differentiated 

the transition types in the varied set of nine psychiatric questionnaire scores, 

diminished sensitivity to transition structure was linked to both OCD (β = -0.03, 

SE = 0.01, p = 0.02) and depression (β = -0.03, SE = 0.01, p = 0.03) scores 

(Figure 3.5). However, with the transdiagnostic analysis, the effect was shown 

to be specific to compulsivity (β = -0.03, SE = 0.02, p = 0.048). Similarly, reduced 

theta power at the first stage was linked to more than one questionnaire score—

schizotypy (β = -0.03, SE = 0.01, p = 0.01), depression (β = -0.03, SE = 0.01, p 

= 0.02) and OCD (β = -0.02, SE = 0.01, p = 0.02). Again, the data was ultimately 

best explained by the compulsive dimension (β = -0.03, SE = 0.01, p = 0.03) 

(Figure 3.5). 



112 
 

 

Figure 3.5. Alpha sensitivity to transition structure and theta power at first stage choice with total questionnaire scores and 

psychiatric dimensions.
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Figure 3.5. Alpha sensitivity to transition structure and theta power at first 

stage choice with total questionnaire scores and psychiatric dimensions (AD: 

‘anxious-depression’; CIT: ‘compulsive behaviour and intrusive thought’, SW: 

‘social withdrawal’). Alpha power differentiating rare versus common transitions 

was less distinguished with more than one questionnaire score, but the effect was 

shown to be specific to the compulsive dimension (CIT, as opposed to AD and SW). 

Similarly, reduced theta power at first stage choice was linked to several 

questionnaire scores but was ultimately specific to compulsivity. The Y-axes shows 

the percentage change in alpha power sensitivity to transition type (%) or change in 

theta power (µV2) as a function of 1 standard deviation increase of psychiatric 

questionnaire/dimension scores. Error bars denote standard errors. *p < 0.05.
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Discussion 

Goal-directed deficits are consistently observed in compulsivity (Gillan & Robbins, 

2014) and this study was no exception—individuals high in compulsivity showed 

poorer model-based planning. Despite the consistency of these findings, little is 

known about the specific mechanisms underlying goal-directed deficits in 

compulsivity. Most of the theorising in this area has focused on the implementation 

of the model and specifically the balance/arbitration between competing model-

based and model-free influences during choice (Gillan & Robbins, 2014; Gruner et 

al., 2016). What remains to be seen is whether compulsive individuals acquire an 

accurate representation of the ‘model’ itself, which is of course a prerequisite for 

engaging in goal-directed behaviour. In other words, having an accurate model of 

the world is of course necessary if one hopes to use this model to guide choice.  

 

We sought to fill this gap by using electrophysiology to investigate if goal-directed 

deficits in compulsivity reflect issues with constructing and maintaining an accurate 

internal model of the task environment (i.e. state transition probabilities). An analysis 

of reaction times provided the first evidence that high compulsive individuals were 

less aware of state-state transitions. In line with prior research, subjects show longer 

RTs following rare transitions (Shahar et al., 2019), which is presumed to reflect the 

fact that one needs to adjust to this unlikely event and ‘re-plan’ their next choice. In 

line with this account, we found that individuals who had higher levels of model-

based planning performance showed the largest RT differences following rare 

versus common transitions. Crucially, the opposite was true of compulsivity, with the 
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most compulsive individuals showing the smallest difference in RT for these trial 

types. Thus, compulsivity is associated with having diminished awareness of the 

transition structure of the task, a prerequisite for engaging in model-based (goal-

directed) planning on this task. 

 

Moving beyond behaviour, analysis of alpha power following these state transitions 

revealed a strikingly similar picture. Much like reaction times, alpha 

desynchronization at the second stage of this task was sensitive to whether a rare 

or common transition occurred. Specifically, rare transitions were associated with 

greater alpha desynchronization compared to common trials, possibly reflecting the 

greater mental effort required on these trials to call to mind the action values 

associated with options the individual was not expecting to see. Consistent with this 

interpretation, previous studies using n-back paradigms have shown parieto-

occipital alpha is more suppressed when working memory load increases (Pesonen 

et al., 2007; Stipacek et al., 2003). Individual difference analysis demonstrated that 

this difference in alpha desynchronization had important behavioural correlates. 

Those individuals who were highest in model-based planning showed the largest 

differences in alpha power for rare versus common transitions. Importantly, the 

effect for compulsivity was reversed—higher levels of compulsivity were associated 

with less of a distinction in alpha power for rare versus common transitions. Together 

with the reaction time data, this is the first neural evidence suggesting that 

compulsivity may be characterised by failures in representing the kind of causal 

state-state relations necessary to behave in a goal-directed manner.  
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These findings do not exclude the possibility that compulsive individuals also face 

issues with implementing model-based planning in situations when they might have 

the requisite state-state knowledge. Mid-frontal theta reflects a common mechanism 

for executing adaptive control in a variety of contexts (Cavanagh et al., 2012) and 

more specifically for selecting between competing options, including the 

suppression of distracting stimuli when focused attention is required (Nigbur et al., 

2011). As theta was a good candidate neural signature of model-based deliberation, 

we thus tested if there was evidence for reduced theta power in compulsive 

individuals at the crucial time of first stage choice, when model-based and model-

free action values putatively compete for control. We found that theta power was 

indeed reduced in high compulsive individuals during first stage choice, though 

evidence of a link between increased theta and increased model-based planning 

itself was not compelling in the present study. Prior research has shown that OCD 

patients exhibit lower theta power during tasks that require inhibitory regulation (Min 

et al., 2011), suggesting that reduced levels observed here in high compulsive 

individuals might reflect a failure to inhibit competing model-free action values. It is 

equally possible, however, that reduced theta might reflect a lack of the existence of 

competing signals. For instance, if patients fail to represent a model of the task 

environment, then one might argue that the need to engage cognitive control is 

necessarily reduced.  
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Previous EEG studies of the two-step task (Eppinger et al., 2017; Sambrook et al., 

2018; Shahnazian et al., 2019) showed that the P300 was associated with state-

state transitions. However, the inconsistent direction on the effects raises doubt as 

to how these differences should be interpreted. Recent literature conceptualises the 

P300 as a decision signal that builds towards a threshold at choice time (Twomey 

et al., 2015) and as such variances in RT will influence the latency of the stimulus-

locked P300 amplitude peak (Kelly & O’Connell, 2015). Our results comparing 

stimulus-locked and response-locked analysis approaches suggest that the 

transition effect of the P300 may be attributed to RT variances. In each case 

however, we noted that the effects were not linked to individual differences in model-

based planning. Shahnazian and colleagues also investigated theta (but not alpha) 

frequencies as potential neural correlates of state-state transitions related to model-

based control on the two-step task (Shahnazian et al., 2019). We replicated their 

null results for theta here (Supplemental Figure A.II.S9). 

 

In this study, we utilised a compulsive dimension born from transdiagnostic 

phenotyping in our analyses (Gillan et al., 2016) to ensure that we controlled for the 

collinearity of psychiatric symptoms across disorders. Indeed, we found that the 

modulations of alpha and theta power were non-specific when examined across the 

individual DSM-defined questionnaires, but the dimensional approach was able to 

assign specificity to our results: impairments in the representation of the mental 

model and cognitive control were solely linked to the compulsive dimension (and not 

anxious-depression or social withdrawal phenotypes). 
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Overall, our findings suggest that compulsive individuals have goal-directed 

difficulties that are not confined to the execution of the mental model, but also to its 

construction/maintenance. Understanding the mechanisms underlying these 

different processes will be vital for future research; in particular, understanding how 

the internal model becomes altered may be crucial for understanding how obsessive 

beliefs manifest and interact with the compulsive behaviour. It is still unclear how 

compulsions and obsessions synergise. Clinical cognitive models of OCD have long 

presumed that compulsions are performed to reduce anxiety induced by obsessive 

beliefs (Matthews & Wells, 2008; Salkovskis & McGuire, 2003), in contrast to a more 

recent hypothesis suggesting that obsessions are post-hoc rationalisations to 

explain the performance of compulsive behaviour (Gillan & Sahakian, 2015). These 

data may suggest that a more fluid distinction between obsessions and compulsions 

is instead warranted. It is possible that failures in linking actions to their 

consequences may be a common source of both compulsive habitual behaviours in 

OCD and also faulty metacognitive beliefs that form the basis of obsessions. Indeed, 

a parallel literature is emerging that suggests a range of impairments in 

metacognition are characteristic of compulsivity (Rouault et al., 2018; Seow & Gillan, 

2020). These include inflated confidence in decisions, and deficits in the ability to 

use feedback to update metacognitive beliefs. 
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Chapter 4: A dimensional study of error-related negativity 

(ERN) and self-reported psychiatric symptoms 

 

Introduction 

Errors are a critically important information source. They allow us to monitor and 

continually adapt performance to changes in the environment, to slowly and 

incrementally improve skills, and to avoid large mistakes by having smaller ones 

attended to. Without this capacity, we might find ourselves repeating unproductive 

or damaging behaviours. Conversely, a hypersensitive error detection system might 

keep us from trying new things, from getting out of our comfort zone and 

experiencing the learning that comes from failure. Since the early nineties, the 

mainstay of error monitoring research has been the unique neural response to the 

commission of errors—the error-related negativity (ERN), a negative deflection of 

the event-related potential that peaks approximately 50-100ms after an error 

response (Falkenstein et al., 1991; Gehring et al., 1993). Fundamentally, the ERN 

represents a well-validated and reliable neurophysiological index of error processing 

(Holroyd & Coles, 2002) with the anterior cingulate cortex posited to be its neural 

generator (Debener, 2005; Grützmann et al., 2016; Miltner et al., 2003).  

 

Impairments in error monitoring are phenomenologically characteristic of a range of 

psychiatric disorders (Ullsperger, 2006), and this has been supported by the 

frequent observation of alterations in the ERN in patient grous (Gillan et al., 2017; 
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Weinberg, Dieterich, et al., 2015). For example, studies have observed diminished 

ERNs in schizophrenia (Bates et al., 2002; Foti et al., 2012; Minzenberg et al., 2014; 

S. E. Morris et al., 2006; Simmonite et al., 2012), bipolar disorder (Minzenberg et 

al., 2014; Morsel et al., 2014) and substance use disorder (Franken et al., 2007; 

Sokhadze et al., 2008), while enhanced ERN amplitudes are consistently seen in 

obsessive-compulsive disorder (OCD) (Carrasco, Hong, et al., 2013; Endrass et al., 

2008, 2014; Endrass & Ullsperger, 2014; Klawohn et al., 2014), social anxiety 

disorder (Endrass et al., 2014) and generalised anxiety disorder (Carrasco, Hong, 

et al., 2013; Weinberg et al., 2010; Weinberg, Klein, et al., 2012; Weinberg, Kotov, 

et al., 2015).  

 

Though the precise functional role of the ERN is still highly debated (W. H. Alexander 

& Brown, 2011; M. G. H. Coles et al., 2001; Holroyd et al., 2005; Vidal et al., 2000; 

Yeung et al., 2004), there are several interpretations of the various ERN 

abnormalities observed in psychopathology. For diminished ERNs associated with 

bipolar disorder and schizophrenia, the phenomenon is hypothesised to reflect 

internal response monitoring deficits posited to underlie the generation of positive 

schizophrenia symptoms (Frith & Done, 1988; McGrath, 1991). As for disorders with 

enhanced ERN amplitudes (i.e. OCD, social anxiety and generalised anxiety), one 

commonality amongst these disorders is that they are fundamentally characterised 

by high levels of anxiety. Here, the enhanced ERN is thought to reflect an increased 

sensitivity to errors (Hajcak, 2012; Weinberg, Riesel, et al., 2012) which may be 

experienced as highly distressing (Dreisbach & Fischer, 2012; Hajcak & Foti, 2008; 
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Spunt et al., 2012) in anxiety. This is supported by a body of evidence showing 

exaggerated physiological changes associated with anxiety (e.g. enhanced startle 

reflex (Hajcak & Foti, 2008; Riesel et al., 2013), heart rate deceleration (Hajcak et 

al., 2003b, 2004) and skin conductance changes (Hajcak et al., 2003b, 2004)) are 

linked to larger ERNs. Given that ERN amplitude shifts are so pervasive in 

psychiatry, it has been suggested and recognised by the Research Domain Criteria 

Initiative (RDoC) (Insel et al., 2010) that these reflections of altered error processing 

may be a transdiagnostic phenomenon (Gillan et al., 2017; A. Meyer & Klein, 2018; 

Weinberg, Dieterich, et al., 2015) that holds potential as a biomarker of mental 

health. 

 

In recent years, meta-analyses have proposed phenotypes beyond Diagnostic and 

Statistical Manual of Mental Disorders (DSM) categories that may underlie 

alterations in ERN amplitude and explain their ubiquity across psychiatric groups. 

Particularly for the enhanced ERN, anxious apprehension (Moser et al., 2013) or 

uncertainty (Cavanagh & Shackman, 2015) are key candidates, supported by 

studies in non-clinical samples demonstrating that increased levels of worry (Hajcak 

et al., 2003a; Moser et al., 2012; Zambrano-Vazquez & Allen, 2014) and threat 

sensitivity (Weinberg et al., 2016) are associated with larger ERNs. That said, a 

recent meta-analysis posits a higher enhanced ERN effect size for obsessive-

compulsive symptomology versus anxiety (Pasion & Barbosa, 2019). As only a few 

studies have attempted to disentangle (and control for) intercorrelated symptoms 

within individuals in the same sample, and even fewer have done this in a sample 
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of sufficient size, it remains to be seen if enhancements in the ERN confer risk for 

anxiety or compulsive symptoms.  

 

To test this, we used a dimensional approach whereby we measured co-occurring 

symptoms of a range of disorders within the same individuals and tested for 

associations with the ERN in their original form, as well as after they had been 

reduced to three dimensions—anxious-depression, compulsive behaviour and 

intrusive thought (hereafter ‘compulsivity’) and social withdrawal (Gillan et al., 2016). 

Using this method, we previously showed that a transdiagnostic compulsive 

dimension maps onto deficits in goal-directed control better than OCD symptoms 

(Gillan et al., 2016); a finding that has since been replicated (Patzelt et al., 2019). 

We also showed that this method can reveal associations that are hidden by 

categorical disorder groupings. For example, anxious-depression is linked to 

reduced confidence, while individuals high on the spectrum of compulsivity have 

elevated confidence (Rouault et al., 2018; Seow & Gillan, 2020). This finding might 

explain why group level effects in OCD (where patients have high levels of both 

compulsivity and anxious-depression) have not revealed confidence abnormalities 

(Hauser, Allen, Rees, et al., 2017; Vaghi et al., 2017). As such, the transdiagnostic 

method may be able to specify whether enhanced ERN amplitude shifts are truly 

related to anxious or compulsive symptomology. An additional advantage of using 

these previously defined transdiagnostic dimensions to ambiguate ERN 

relationships, as opposed to fitting new definitions of psychiatric phenotypes to our 

data here, is that it offers a clear extension to the several other cognitive phenomena 
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(i.e. goal-directed control and metacognition) related to these dimensions. 

Generalizing ERN effects to known cognitive mechanisms would foster better 

understanding of ERN amplitude shifts in psychopathology. 

 

Following this methodology, we characterised participants in terms of a broad range 

of psychopathology (9 questionnaires in total) that have almost all been linked to the 

ERN in prior work; alcohol addiction, apathy, depression, eating disorders, 

impulsivity, OCD, schizotypy, social anxiety and trait anxiety. We hypothesised that 

an enhanced ERN would be associated with OCD, social anxiety and trait anxiety, 

but that this would be explained by a psychiatric dimension encapsulating high levels 

of anxiety, i.e. anxious-depression. While we expected OCD symptom severity to 

correlate with the ERN, we anticipated that the compulsivity dimension would not 

show an association as prior work has shown diminished ERN in addiction and 

schizophrenia (see review (Gillan et al., 2017)), both of which are strong contributors 

to the compulsivity dimension. 

 

We related ERN amplitude to self-report psychiatric symptoms from 196 participants 

who completed the arrow-version of the Eriksen Flanker task (Eriksen & Eriksen, 

1974). Contrary to our hypothesis, we found that none of the psychiatric symptoms 

nor the transdiagnostic dimensions were significantly associated to alterations in 

ERN amplitude. To contextualise the absence of ERN affects in the present sample 

(i.e. effect size), we report results from an additional cognitive task relating goal-

directed learning (Daw et al., 2011) to dimensional phenotypes. Here, we did find 
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evidence for an association; replicating prior work (Gillan et al., 2016) showing that 

goal-directed learning was related to the compulsive behaviour and intrusive thought 

dimension.
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Methods 

Power estimation. An appropriate sample size was determined based on a 

previous study that reported an association of OCI-R scores and enhanced ERN 

amplitude that approached significance (r = 0.32, p = 0.06) (Gründler et al., 2009), 

an effect size suggesting that N = 155 participants were required to achieve 90% 

power at 0.005 significance (significance threshold is corrected for multiple 

comparisons over the nine psychiatric questionnaires investigated). 

 

Participants. The majority of participants were recruited from the general public 

through university channels via flyers and online advertisements, and a small 

number were patients from St. Patrick’s Mental Health hospital. We included 

these patients to enrich our sample for self-report mental health symptoms. They 

were all ≥18 years (with an age limit of 65 years) and had no personal/familial 

history of epilepsy, no personal history of neurological illness/head trauma nor 

personal history of unexplained fainting. After reading the study information and 

consent online, participants provided informed consent by clicking the ‘I give my 

consent’ button. They also gave written consent before the in-laboratory EEG 

session. They were paid €20 Euro (€10/hr) upon completion of the study. We 

collected data from N = 234 participants; N = 8 were patients starting group 

treatment for anxiety from a local clinic and the rest N = 226 were from the 

general public. Of the total sample, 138 were female (58.97%) with ages ranging 

from 18 to 65 (mean = 31.42, standard deviation (SD) = 11.48) years. All study 

procedures were approved by Trinity College Dublin, School of Psychology 

Research Ethics Committee and St. Patrick’s Mental Health Services Research 

Ethics Committee. 
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Procedure. Before arriving to the lab for testing, participants navigated a 

webpage to provide informed consent, basic demographic data (age, gender), 

list any medications they were currently taking for a mental health issue (if so, to 

indicate the name, dosage and duration) and complete a set of 9 self-report 

psychiatric questionnaires. For a subset of the participants (N = 110, 47%), they 

completed a short psychiatric interview in-person on the day of testing (Mini 

International Neuropsychiatric Interview; M.I.N.I.) (Sheehan et al., 1998). During 

the experimental EEG session, participants completed two tasks: the modified 

Eriksen flanker task (Eriksen & Eriksen, 1974) and the two-step reinforcement 

learning task (Daw et al., 2011). The latter task was analysed in the previous 

experimental chapter and so the methods are not described in detail, however 

we report one basic behavioural result from this task to contextualise our ERN 

results. Once participants completed both tasks, they completed a short IQ 

evaluation before being debriefed and compensated for their time. 

 

Exclusion criteria. Several exclusion criteria were applied to ensure data quality. 

Participants were excluded if they failed any of the following on a rolling basis. (i) 

Participants whose EEG data were corrupted (N = 2) or incomplete (i.e. recording 

was prematurely cut) were excluded (N = 4). (ii) Participants whose error 

response-locked epochs over four electrode sites examined failed a threshold 

criterion of ±50μV for 95% of epochs (see Response-locked ERPs) were 

excluded (N = 5). (ii) Participants who missed >20% of trials (n > 96) of the flanker 

task were excluded (N = 11). (iii) Participants who scored <55% accuracy were 

excluded (N = 9). (iv) Participants who incorrectly responded to a “catch” question 



127 
 

within the questionnaires: “If you are paying attention to these questions, please 

select ‘A little’ as your answer” were excluded (N = 7). Combining all exclusion 

criteria, 38 participants (16.24%) were excluded. 196 participants were left for 

analysis (115 females (58.67%), between 18-65 ages (mean = 30.82, SD = 11.53 

years).  

 

Disorder prevalence (M.I.N.I.). After exclusion, 87 participants (44.39%) 

completed the M.I.N.I., which was introduced part-way through the study. Of 

these participants, 38 (43.68%) presently met the criteria for one or more disorder. 

Broken down by recruitment arm, 8 (100%) from the clinical arm met criteria, 

while 30 (37.97%) from university channels met criteria. This rate is close to 

published reports on the prevalence of mental health disorders in college student 

samples (Auerbach et al., 2018; Evans et al., 2018). Of the total sample, 31 

(15.82%) were currently medicated for a mental health issue. Broken down by 

recruitment arm, all individuals recruited from the clinic were medicated, while 23 

(12.23%) of those recruited through normal channels were medicated. Further 

diagnostic information of the sample is summarised in Supplemental Table 

A.III.S4.  

 

Flanker task. Participants completed an arrow-version of the Eriksen Flanker 

task (Eriksen & Eriksen, 1974). Each trial consisted of either congruent (<<<<< 

or >>>>>) or incongruent (<<><< or >><>>) arrow stimuli presented in white on 

a grey background of a 32 x 24 cm computer monitor. Participants were 

instructed to respond as quickly and accurately as possible. Flanker stimulus 

were presented for 200ms and they had 1050ms to respond by pressing one of 
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two keyboard keys in order to identify the direction of the central arrow. 

Responses were indicated using the left (‘Q’) and right (‘P’) keys. There was a 

total of 480 trials split into two blocks, each with 240 stimuli (80 congruent, 160 

incongruent) presented. At the end of the first block, if participants had >25% 

missed trials or had accuracy >90%, they were told to ‘Please try to respond 

faster!’ for the second block. If their accuracy was <75%, they were told ‘Please 

try to respond more accurately!’. Otherwise they were told ‘Great job!’. 

Participants completed 30 practice trials (10 congruent; 20 incongruent) of a 

slower version of the task prior to the beginning of the experimental task (stimulus 

presentation: 400ms, response time: 1000ms). 

 

Behavioural data pre-processing. Missed trials were excluded from analysis. 

A total of 2275 trials (2.42%) were removed (per participant mean = 11.61 trials).  

 

EEG recording & pre-processing. Scalp voltage was measured using 128 

electrodes in a stretch-lycra cap (BioSemi, The Netherlands). EEG signals were 

sampled at 512 Hz. EEG data were processed offline using EEGLab (A. Delorme 

& Makeig, 2004) version 14.1.2 in MATLAB R2018a (The MathWorks, Natick, 

MA). Data were downsampled to 250 Hz and high-pass filtered at 0.5 Hz. Line 

noise was removed with CleanLine (Mullen, 2012) at frequencies 50, 100, 150, 

200 and 250 Hz. Data were further pre-processed with Clean Rawdata plugin: 

bad channels were rejected with a criterion of 80% minimum channel correlation 

and continuous data were corrected using Artifact Subspace Reconstruction 

(ASR) (Mullen et al., 2013), with correction parameters set at 10 SD for burst 

criterion and 25% of contaminated channels for time window criterion. All 
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removed channels were interpolated, and the data were re-referenced to the 

average. To reject ocular and other non-EEG artefacts, we ran ICA with runica 

(pca option on) on unsegmented EEG data and rejected components 

automatically with Multiple Artifact Rejection Algorithm (MARA) (Winkler et al., 

2011) at a threshold of >40% artefact probability.  

 

Response-locked ERPs. To quantify ERN amplitudes, data were epoched 

response-locked from -400ms to 500ms and baseline adjusted using a -400ms 

to -200ms pre-response window on error trials. Epochs were rejected with a 

threshold criterion of ±50μV before being averaged within-in participant. A total 

of 36 epochs (0.35%) were removed (per participant mean = 0.18 epochs). The 

minimum number of epochs for any participant was n = 9, which was above the 

recommended n = 6 for a reliable ERN (Olvet & Hajcak, 2009b). We then used 

the adaptive mean method to estimate amplitude as it minimizes bias induced by 

individual-subject latency variability (Clayson et al., 2013). We searched for the 

largest negative peak within a window of -20ms to 120ms post-response and 

took the mean amplitude ±40ms of the negative peak’s latency. Correct-related 

negativity (CRN) amplitudes were measured with the same approach as the ERN, 

but on correct response trials. We also report results using ERN activity over 

other electrodes (C22, C24 and D2, mean over 4 mid-frontal electrodes), other 

measurement methods (non-adaptive mean, minimum amplitude, trough to 

peak) and when controlled for CRN variation (ERN-CRN (ΔERN), residualised 

scores of ERN predicted by CRN (ERNresid)) in Appendix III.  
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Reliability measures. Internal consistency (split-half reliability) was calculated 

for the ERN and CRN. Data were split into two subsets (even versus odd 

trials/epochs), correlated and adjusted with Spearman-Brown prediction formula. 

 

Self-report psychiatric questionnaires & IQ. Participants completed self-

report questionnaires assessing: alcohol addiction using the Alcohol Use 

Disorder Identification Test (AUDIT) (Saunders et al., 1993), apathy using the 

Apathy Evaluation Scale (AES) (Marin et al., 1991), depression using the Self-

Rating Depression Scale (SDS) (Zung, 1965), eating disorders using the Eating 

Attitudes Test (EAT-26) (Garner et al., 1982), impulsivity using the Barratt 

Impulsivity Scale (BIS-11) (Patton et al., 1995), obsessive-compulsive disorder 

(OCD) using the Obsessive-Compulsive Inventory - Revised (OCI-R) (Foa et al., 

2002), schizotypy scores using the Short Scales for Measuring Schizotypy 

(SSMS) (Mason et al., 2005), social anxiety using the Liebowitz Social Anxiety 

Scale (LSAS) (Liebowitz, 1987) and trait anxiety using the trait portion of the 

State-Trait Anxiety Inventory (STAI) (Spielberger et al., 1983). These self-report 

assessments were fully randomized within the psychiatric assessment 

component of the procedure and were chosen specifically to enable 

transdiagnostic analysis with psychiatric dimensions described in prior work 

(Gillan et al., 2016; Rouault et al., 2018). A proxy for IQ was also collected using 

the International Cognitive Ability Resource (I-CAR) (Condon & Revelle, 2014) 

sample test which includes 4 item types of three-dimensional rotation, letter and 

number series, matrix reasoning and verbal reasoning (16 items total). 

Correlations across questionnaires ranged highly (r = -0.05 to 0.75). Internal 

consistency for all questionnaires were high (Cronbach’s alpha > 0.81). Further 
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details of correlations and reliability measures of questionnaires are in 

Supplemental Table A.III.S1. 

 

Transdiagnostic factors (dimensions). The current sample size was too small 

for de novo factor analysis (MacCallum et al., 1999). As such, raw scores of the 

209 individual items from the 9 questionnaires were transformed into dimension 

scores (anxious-depression, compulsive behaviour and intrusive thought 

(‘compulsivity’), and social withdrawal) based on weights derived from a larger 

previous study (Gillan et al., 2016) (N = 1413). These dimensions are not 

orthogonal and correlate moderately (r = 0.33 to 0.39). See Supplemental Table 

A.III.S2. 

 

Linear regressions. Regression analyses were conducted using linear models 

written in R, version 3.6.0 via RStudio version 1.2.1335 (http://cran.us.r-

project.org) with the lm() function. We investigated if psychiatric questionnaire 

scores were related to ERN amplitude shifts by taking the total score for each 

questionnaire (QuestionnaireScore; z-scored) as a fixed effect predictor. 

Separate regressions were performed for each individual symptom due to high 

correlations across the different psychiatric questionnaires. The model was 

specified as: ERN ~ QuestionnaireScore. For the transdiagnostic analysis, we 

included all three dimensions in the same model, as correlation across variables 

was lessened in this formulation and thus more interpretable. We replaced 

QuestionnaireScore in the equation described previously with the three 

psychiatric dimensions scores (anxious-depression, compulsivity, social 
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withdrawal; all z-scored) entered as predictors. The model was: ERN ~ Anxious-

depression + Compulsivity + Social withdrawal. 

 

Goal-directed learning. Participants also completed a reinforcement learning 

task (Daw et al., 2011) that enabled individual estimations of goal-directed 

learning, which has previously been shown to be deficient in high compulsive 

individuals (Gillan et al., 2016) (see Figure 3.1). Briefly, the task consisted of two 

stages; in the first stage, participants had to choose between two items that had 

different probabilities of transitioning (rare: 30% or common: 70%) to one of two 

possible second stages. In the second stage, participants again had to choose 

between another two items which were associated with a distinct probability of 

being rewarded that drifted over time. Individuals performing goal-directed 

learning (‘model-based’ learner) would make decisions based on the history of 

rewards and the transition structure of the task, as opposed to individuals who 

disregarded the transition structure and made decisions solely on the history of 

rewards (‘model-free’ learner). To quantify goal-directed learning, we 

implemented a logistic regression model testing if participants’ choice behaviour 

was influenced by the reward, transition and their interaction of the previous trial. 

We then tested the relationship of psychiatric dimensions with goal-directed 

learning by including the three factors (anxious-depression, compulsivity, social 

withdrawal) into the basic model as z-scored predictors. Note that inclusion of 

age and IQ in the model did not change the pattern of results. See A.III. 

Supplemental Methods for further details. 
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Power calculation. Sample size calculation for a future study was calculated 

with pwr.r.test function in R utilising the correlation coefficient from the equation 

ERN ~ OCI-R scores. 

 

Data Availability. The code and data to reproduce the ERN analyses of the 

paper are freely available at https://osf.io/vjda6/. 

  

https://osf.io/vjda6/
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Results 

Participants (N = 196) from a majority student sample completed an arrow-

version of the Flanker task, a short IQ evaluation and a battery of self-report 

questionnaires assessing a range of psychiatric symptoms (see Methods). 

Individual item-level responses on these questionnaires were transformed into 

scores for three transdiagnostic dimensions using weights defined in a prior study 

(Gillan et al., 2016); anxious-depression, compulsive behaviours and intrusive 

thought and social withdrawal. 

 

Behavioural results. Across participants, mean error rates ranged from 1.97% 

to 38.24% (mean (M) = 11.55%, standard deviation (SD) = 7.64%) and mean 

response times (RT) ranged from 123.73ms to 472.55ms (M = 275.70ms, SD = 

67.59ms). We observed basic behavioural patterns expected of the task. Mean 

error rates increased for incongruent trials (M = 15.58%, SD = 10.08%) relative 

to congruent trials (M = 3.61%, SD = 4.58%) (t195 = 19.97, 95% Confidence 

Interval (CI) [0.11, 0.13], p < 0.001). Mean RTs were shorter for congruent trials 

(M = 234.46ms, SD = 66.51ms) versus incongruent trials (M = 296.03ms, SD = 

70.16ms) (t195 = -33.38, 95% CI [-0.07, -0.06], p < 0.001). Mean RTs were also 

shorter for error (mean = 212.47ms, SD = 75.20ms) as compared to correct (M 

= 283.23ms, SD = 66.14ms) trials (t195 = -22.41, 95% CI [-0.08, -0.06], p < 0.001). 

Lastly, post-error mean RTs (M = 294.44ms, SD = 88.47ms) were slower than 

post-correct mean RT (M = 274.51ms, SD = 68.38ms) (t195 = 6.13, 95% CI [0.01, 

0.03], p < 0.001). Error rate and RT distributions are visualised in Supplemental 

Figure A.III.S1. 
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Response-locked event related potentials (ERPs). Grand-average ERP 

waveforms at electrode FCz are presented in Figure 4.1a for the ERN and CRN. 

ERN waveforms contained an average of 51.88 (SD = 33.09) error trials per 

participant while the CRN waveform was constructed with average of 404 (SD = 

58.78) correct trials. Across participants, we measured ERN amplitude with the 

adaptive mean method. The ERN exhibited an amplitude of -3.11μV (SD = 

2.79μV) while the CRN had an amplitude of 0.30μV (SD = 1.89μV). Paired t-test 

indicated more pronounced negativities for the ERN than CRN (t195 = -16.66, 

95% CI [-3.82, -3.01], p < 0.001) within-subject. Split half-reliability was high for 

both measures (ERN: r = 0.90; CRN: r = 0.98), confirming the suitability of this 

measure for between-subject analysis.
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Figure 4.1. Error-related negativity (ERN). (a) Response-locked grand average waveforms for error and correct responses at 

electrode FCz. Negative values are plotted upwards. Event-related potential components are labelled: ERN: error-related negativity; 

CRN: correct-related negativity. (b) Scalp map displays the voltage distribution at 37.61ms, the grand average latency of the most 

negative peak for error trials. Electrode FCz position is indicated with a white dot. 
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ERN, questionnaire scores and transdiagnostic dimensions. We tested 

if ERN amplitudes were associated to the self-reported questionnaire scores. 

In contrast to our hypothesis, none of the psychiatric questionnaires showed 

a significant relationship to ERN amplitude (all p > 0.15, where p < 0.005 is 

the Bonferroni corrected significance threshold) (Figure 4.2 and Table 4.1).  

 

For the interested reader, we conducted unplanned, supplementary 

analyses to test for consistency of our findings across different methods of 

ERN quantification, electrode site and reaction times (speed-accuracy trade 

off (Arbel & Donchin, 2009; Gehring et al., 1993)). The patterns of results 

were remarkably similar: no symptom was significantly related to ERN 

amplitude in surrounding electrode sites (all p > 0.08, uncorrected) 

(Supplemental Figure A.III.S6) or with three other ERN quantification 

methods (all p > 0.10, uncorrected) (Supplemental Figure A.III.S7). Two 

other ERN measures that controlled for CRN variation (ΔERN and ERNresid) 

also did not reveal any significant associations (all p > 0.12, uncorrected) 

(Supplemental Figure A.III.S8 and Table A.III.S3). Inclusion of error rate, 

demographics or medication status did not affect the pattern of results (all p 

> 0.09, uncorrected) (A.III. Supplemental Methods).  

 

Transdiagnostic phenotyping did not provide a better explanation for the 

data, with none of the transdiagnostic dimensions significantly associated to 

ERN amplitude (all p > 0.18, uncorrected) (Figure 4.2 and Table 4.1). 
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Figure 4.2. Non-significant associations between ERN amplitude and self-

reported psychopathology. Associations between ERN amplitude with 

questionnaire total scores or transdiagnostic dimension scores (anxious-

depression (AD), compulsive behaviour and intrusive thought (CIT) and social 

withdrawal (SW)). Error bars denote standard errors. Each questionnaire score 

was examined in a separate regression, whereas dimensions were included in 

the same model. The Y-axis indicates the change in ERN amplitude as a function 

of 1 standard deviation (SD) increase of questionnaire or dimension scores. See 

Table 4.1. 
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Psychiatric Questionnaire β (SE) z-value p-value 

Alcohol Addiction 0.23 (0.20) 1.14 0.25 

Apathy 0.14 (0.20) 0.68 0.50 

Depression 0.18 (0.20) 0.88 0.38 

Eating Disorder 0.09 (0.20) 0.45 0.65 

Impulsivity -0.05 (0.20) -0.08 0.94 

OCD -0.29 (0.20) -1.45 0.15 

Schizotypy -0.08 (0.20) -0.42 0.67 

Social Anxiety -0.11 (0.20) -0.54 0.59 

Trait Anxiety -0.01 (0.20) -0.07 0.95 

Transdiagnostic Dimension β (SE) t-value p-value 

Anxious-depression 0.29 (0.22) 1.34 0.18 

Compulsive behaviour and 

intrusive thought 
-0.03 (0.22) -0.14 0.86 

Social withdrawal -0.20 (0.22) -0.91 0.36 

Table 4.1. Associations between ERN amplitude and total scores of self-report 

psychiatric questionnaires or transdiagnostic dimensions. SE = standard error. 

For psychiatric questionnaires, each row reflects the (uncorrected for multiple 

comparisons) results from an independent analysis where each psychiatric 

questionnaire score was regressed against ERN amplitude. For transdiagnostic 

dimensions, all three dimensions scores were included in the same regression 

model. 
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Goal-directed control and compulsivity. For comparison purposes, we also 

assessed goal-directed learning in the same sample using the two-step 

reinforcement learning task (Daw et al., 2011). Split half-reliability was r = 0.71 

for this measure. In prior work, the compulsivity dimension was associated with 

reduced goal-directed learning (Gillan et al., 2016). We replicated this finding (β 

= -0.07, SE = 0.04, p = 0.048) (Figure 4.3), suggesting that the dimension scores 

obtained from this general population sample were valid, providing a comparator 

for interpreting the effect size of ERN trends in the present work.  

 

 

Figure 4.3. Associations between goal-directed learning and psychiatric 

dimensions (anxious-depression (AD), compulsive behaviour and intrusive 

thought (CIT) and social withdrawal (SW)) (N = 196). Error bars denote standard 

errors. Factors were included in the same model. The Y-axis indicates the 

percentage change in goal-directed learning as a function of 1 SD increase of 

dimension scores. *p < 0.05. 
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Discussion 

In the present paper we investigated if ERN abnormalities commonly observed in a 

range of psychiatric disorders could be explained by a transdiagnostic dimension 

characterised by high levels of anxious-depression. Fundamental to this was the 

replication of existing associations of ERN amplitude shifts with the clinical 

phenotypes such as OCD and trait anxiety, but to our surprise we could not detect 

any significant associations of any symptoms with the ERN. Reformulating 

questionnaires into transdiagnostic dimensions did not improve signal.  

 

We considered several possible explanations for the data. First, that the range of 

psychopathology sampled was insufficiently high to detect associations with the 

ERN. We intentionally enriched our sample by including 8 patients from a local 

anxiety clinic (who were starting group therapy) to protect against this possibility. 

This was not necessary; the rest of the sample exhibited high rates of 

psychopathology (Supplemental Figure A.III.S3), consistent with the documented 

characteristics of university students (Auerbach et al., 2018; Bayram & Bilgel, 2008; 

Evans et al., 2018). Excluding the 8 patients recruited from an anxiety disorder clinic, 

37.97% of the sample who were assessed with a standard psychiatric interview 

(M.I.N.I., see Methods) presently met criteria for at least one disorder. In terms of 

the range of self-report symptoms, 25.51% (N = 50) scored of ≥21 on the OCI-R and 

54.59% (N = 107) scored of >41 on the STAI, the standard clinical threshold for OCD 

and anxiety for the respective instruments (Ercan et al., 2015; Foa et al., 2002).  
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Second, we ensured that our data, both self-report and electrophysiological, were 

valid. Internal consistency measures were high for all questionnaires 

(Supplemental Table A.III.S1). We note the transdiagnostic dimensions utilised 

here were defined from a prior study (Gillan et al., 2016) and not derived from our 

current data. The factor structure has been replicated in two other independent 

datasets (Rouault et al., 2018; Seow & Gillan, 2020) highlighting its reproducibility 

and validity. Finally, perhaps the strongest evidence for the validity of the 

transdiagnostic dimensions structure we employed here are two replications with 

respect to the specific association between compulsive behaviour and intrusive 

thought scores and goal-directed planning; one observed in the present study and 

another via a separate research group (Patzelt et al., 2019). 

 

In terms of the ERN itself, we were able to reproduce all the expected behavioural 

(Supplemental Figure A.III.S1 and Figure A.III.S2) and electrophysiological 

patterns this task was expected to elicit, suggesting that there were no issues with 

data quality. Our paradigm consisted of twice as many incompatible trials than 

compatible trials which was intended to induce higher conflict frequency to increase 

the number of errors made. However, conflict frequency has been shown to 

modulate performance monitoring ERPs such as N2 and CRN amplitudes 

(Bartholow et al., 2005; Grützmann et al., 2014). One study found that increasing 

task difficulty (by using shorter response times and poorer visual contrast) abolished 

ERN differences between groups of high/low OC symptoms (Kaczkurkin, 2013), 

raising the concern that our task may have induced a difficulty component that 
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served to dampen our ability to detect ERN-OCD associations. Evidence to the 

contrary however comes from the fact that the trial compatibility ratio in our task has 

been used previously in a clinical study and was able to detect larger ERN 

amplitudes in OCD patients versus healthy controls (Riesel et al., 2014).  

 

Contextualising these data with the broader literature, ERN abnormalities may be 

more sensitive to the categorical comparison of patients versus controls than 

dimensional variation in the general population. Several OCD patient studies did not 

find any correlation with symptom severity and ERN amplitude within patient groups 

(Carrasco, Harbin, et al., 2013; Endrass et al., 2008; Riesel, 2019; Riesel et al., 

2014, 2017). The ERN remains elevated in OCD despite successful treatment 

(Hajcak, 2006; Ladouceur et al., 2018; Schrijvers et al., 2009) and elevations are 

also observed in unaffected first-degree relatives of patients (Carrasco, Harbin, et 

al., 2013; Riesel et al., 2019). As such, the ERN has been couched as a psychiatric 

vulnerability endophenotype (Riesel, 2019). Nonetheless, our individual differences 

approach should have been able to pick up these trait effects along the continuum 

of scores, regardless of the subtleties of state-based fluctuations.  

 

Perhaps the simplest explanation for these data is that ERN associations with 

psychopathology are smaller than previously assumed. Notably, effects of OCD 

symptoms trended in the predicted direction, where individuals who scored higher 

on this questionnaire had a larger ERN. Likewise, the trend was for alcohol addiction 

to be associated with a blunted ERN, consistent with the previous literature. Recent 
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reviews add support to this conclusion: two meta-analyses noted that overall effect 

sizes for anxiety or OCD traits for enhanced ERN were relatively small (Cavanagh 

& Shackman, 2015; Pasion & Barbosa, 2019) and another that assessed the effect 

size of ERN amplitude shifts in OCD (Riesel, 2019) noted that larger effect sizes 

were associated with smaller sample publications, suggesting publication bias. In 

terms of statistical power, our study has one of the highest sample numbers (N = 

196) investigating the ERN in psychiatry. Despite the ERN’s link to psychiatry for 

two decades (Gillan et al., 2017; Olvet & Hajcak, 2009a; Riesel, 2019; Weinberg, 

Dieterich, et al., 2015), there are only six studies with total N > 150 to date (Hanna 

et al., 2016, 2018; A. Meyer & Klein, 2018; Riesel et al., 2019; Weinberg et al., 2016; 

Weinberg, Kotov, et al., 2015). Our small effect size between OCD symptoms and 

the ERN suggest a sample size of N = 729 in order to have 80% power to detect a 

0.05 significant association. 

 

It is perhaps notable, nonetheless, that our transdiagnostic framework did not 

perform better in relative terms. Returning to our hypothesis, we found no evidence 

that anxious-depression might be responsible for the commonly observed 

enhancement of the ERN in anxiety disorders. In fact, the direction of this non-

significant effect was in the opposite direction. This finding might reflect the fact that 

this dimensional framework is not apt to capture variation in the ERN. The 

transdiagnostic dimensions utilised in this study are not intended to be fixed and 

final. Future research might explore alternatives to the framework employed here to 

investigate if a dimensional structure exists that can explain the common ERN 
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patterns seen across psychiatric disorders. As these dimensions have previously 

shown specific associations with other cognitive deficits such as goal-directed 

planning and metacognition (Gillan et al., 2016; Rouault et al., 2018; Seow & Gillan, 

2020), our findings suggest that ERN amplitude shifts either exhibit smaller effect 

sizes than was previously thought or are not underlain by the same psychopathology 

as other cognitive phenomena that are characteristic of OCD and related disorders. 

 

This year, several authors have highlighted the potential for a transdiagnostic 

framework at reconciling the broad range of ERN patterns in the literature (Gillan et 

al., 2017; Pasion & Barbosa, 2019; Riesel, 2019). The present paper is timely, being 

the first study to apply an expansive and empirically robust transdiagnostic approach 

that directly addresses the issue of co-occurring symptoms in a large sample. To 

our surprise, despite being well-powered, we were unable to significantly replicate 

previously observed associations with various aspects of mental health and a 

transdiagnostic approach to quantifying mental health in the sample did nothing to 

remedy that. Future research in this area might agree that even larger samples than 

previously assumed are needed to delineate robust associations in general 

population samples. 
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Chapter 5: General discussion 

 

Summary 

Several features of the current psychiatric nosology, such as the similarity across 

supposedly distinct disorder classes and heterogeneity within these categories, 

have hampered advances in delineating mechanisms core to compulsive behaviour. 

For example, although it has been posited that the repetitive compulsive actions of 

OCD and related disorders arise from faulty goal-directed control systems in the 

brain (Gillan et al., 2016; Sjoerds et al., 2013; Voon et al., 2015), other research has 

also shown that disorders which are non-compulsive in nature exhibit the same 

impairment (Alvares et al., 2014, 2016; Culbreth et al., 2016; C. Delorme et al., 2016; 

R. W. Morris et al., 2015). At face value, this suggests that failures in goal-directed 

control are not specific to compulsivity, as opposed to other aspects of 

psychopathology. Another explanation, however, is that the methods we typically 

employ to study the neurocognitive basis of mental health, i.e. case-control 

comparison designs based on the DSM, are ill-equipped to delineate mechanistic 

explanations for specific psychiatric phenomena.  A study by Gillan and colleagues 

from 2016 eschewed the traditional case-control design and instead examined 

whether transdiagnostic psychiatric dimensions, expressed in normal variation of 

general population samples, may provide an alternative pathway for mapping mental 

health to mechanisms (Gillan et al., 2016). Using this method, the authors found that 

deficits in goal-directed control failure were specific to variation along a spectrum of 

compulsivity (and were not linked to other dimensions of mental health including 
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anxious-depression and social withdrawal phenotypes). A subsequent study using 

this approach found novel metacognitive deficits in compulsivity, highlighting how 

these effects may otherwise be hidden by competing influences of co-occurring 

anxious-depression in patients versus healthy controls (Rouault et al., 2018). 

Together, these findings suggest that a transdiagnostic perspective may be critical 

in developing a robust, replicable and specific neurocognitive characterisation of 

compulsivity. This premise was the central focus of this thesis, which used a 

dimensional method to carry out a comprehensive investigation of the advantages 

of this approach in understanding the brain processes that go awry in compulsivity.  

 

The first experimental chapter aimed to advance our understanding of metacognitive 

deficits in compulsivity by studying confidence formation in the context of 

reinforcement learning. This was already attempted in an OCD patient versus 

healthy control comparison study that utilised a predictive inference task and found 

no confidence abnormalities (Vaghi et al., 2017). Here, we tested the premise that 

adopting a transdiagnostic methodology would reveal important metacognitive 

deficits on this task (Gillan et al., 2016). We found that this was indeed the case; the 

dimensional approach revealed metacognitive dysfunctions linked to compulsivity 

which were not present in the prior case-control study. Specifically, we replicated 

the double dissociative confidence relationship between compulsivity and anxious-

depression previously observed in perceptual decision making (Rouault et al., 

2018): compulsivity was related to increased confidence levels while anxious-

depression was linked to lowered confidence levels. We also found that high 
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compulsive individuals were less informed by several environmental evidence 

sources when adjusting their confidence reports. These metacognitive deficits 

suggest that high compulsive individuals have faulty metacognitive beliefs and were 

additionally impaired in updating these beliefs with surrounding evidence. With 

respect to one finding that we replicated from this paper, that OCD symptom severity 

was linked to a disconnection between confidence and behaviour (‘decoupling’), we 

showed that the same deficit was also associated with five out of eight of the other 

psychiatric phenomena we measured (and all 8 when no correction for multiple 

comparisons was applied). This highlights the generalisability of this finding, which 

was circumvented when we applied the transdiagnostic analysis and obtained a 

more specific result: action-confidence decoupling was only significantly associated 

with the compulsive dimension. Overall, results from this experiment highlighted the 

advantage of using a dimensional method in disambiguating effects linked to 

different psychopathology that may confound each other in a case-control 

investigation and suggested that compulsivity is linked to deficiencies in constructing 

and maintaining the mental model.  

 

One implication of having a faulty mental model is problems in enacting goal-

directed behaviours that require this “cognitive map” for simulation and planning. In 

general, it is thought that goal-directed deficits can arise from either the failure in 

constructing and maintaining this model or simply in the use/implementation of it. In 

the second experimental chapter, we used EEG to examine the neural correlates of 

the representation of the mental model while participants performed the two-step 



149 
 

reinforcement learning task (Daw et al., 2005, 2011). We found behavioural and 

neural signatures of the mental model (state-state transition knowledge) in both 

reaction time and the desynchronization in parietal-occipital alpha power that were 

correlated with model-based planning ability. Notably, these signatures were 

diminished in high compulsive individuals. This suggests that high compulsive 

individuals have impaired representations of the mental model that is linked to 

failures in making goal-oriented choices. As for the implementation of the model, the 

data were not as clear. We found that the general marker of cognitive control, mid-

frontal theta power, was diminished in high compulsive individuals during the making 

of choice that was linked to less awareness of state-state transition via reaction 

times. However, the measure did not correlate with individual differences in model-

based planning; on a more conceptual level, it becomes challenging to measure the 

implementation of a model that is itself compromised. The data here, together with 

those of the prior chapter, suggest that compulsivity is characterised by an 

impoverished internal model of the task environment—a prerequisite for model-

based (goal-directed) behaviour. Finally, we also observed that the modulations of 

both alpha and theta power were non-specific when single-disorder questionnaires 

were examined, but in support for the dimensional approach, the effects were only 

significantly linked to the compulsive dimension (and not anxious-depression or 

social withdrawal). 

 

In the final experimental chapter, we attempted to address the conundrum whether 

hyperactive error monitoring, reflected as enhanced error-related negativity (ERN) 
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amplitudes, relate to compulsive or anxious symptomatology. ERN amplitude 

enhancement is observed in both OCD and anxious disorders (Moser et al., 2013; 

Riesel, 2019), but enhanced ERNs seem to make more functional sense for anxiety 

given the error signal’s relation to startle response and avoidance (Frank et al., 2005; 

Hajcak & Foti, 2008). We thus utilised a modified Flanker task (Eriksen & Eriksen, 

1974) and transdiagnostic phenotyping to test this hypothesis. Contrary to our 

expectations, we found that none of the nine psychiatric phenomena we investigated, 

including OCD and trait anxiety symptoms, were significantly associated with any 

ERN amplitude shifts. The dimensional analysis also did not explain the data better. 

This non-significant pattern of results was contrasted with a significant deficit in goal-

directed control associated with compulsivity in the same sample. Our conservative 

interpretation suggests that ERN amplitude effect sizes in psychiatry may be much 

smaller than assumed in the literature. As of yet, it remains unclear if transdiagnostic 

approaches can provide a better fit to the ERN than classic disorder-based research 

designs.  

 

Synthesis, limitations and future directions 

The ‘habit hypothesis’ of OCD has proven itself to be a mechanistically and 

neurobiologically promising explanation for how compulsions arise. However, 

research thus far has focused mainly on delineating which general mode of action 

control goes awry: habitual or goal-directed (Robbins et al., 2012). As such, there is 

little evidence (or indeed, investigation) of why goal-directed control is deficient—

whether it is because of the lack of an accurate world-model to rely upon and/or a 
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tendency to ignore that mental model in favour of an alternative and less taxing route 

to action selection. In this thesis, we observed that compulsive individuals exhibited 

several metacognitive dysfunctions and had a failure to acquire an accurate 

representation of task contingencies (evident in both reaction time and EEG). These 

studies suggest for the first time that failures in goal-directed control commonly 

observed in compulsivity may arise due to impairments in curating the meta-model 

for action planning. 

 

More recent conceptualisations of OCD have begun to question if compulsive 

symptomatology is best explained in terms of behavioural inflexibility, citing that 

probabilistic reversal learning tasks have, on the contrary, found lower perseverative 

behaviours linked to compulsivity (Fradkin et al., 2020; Hauser, Iannaccone, et al., 

2017). Instead, it has been suggested that compulsivity may be more accurately 

described by dysfunctions in altered feedback processing (Fradkin et al., 2018), 

more specifically that OCD patients are uncertain about state transition changes 

because they under-rely upon accumulated past knowledge (Fradkin et al., 2020). 

Our EEG findings align with this alternative hypothesis to a certain degree. We found 

that high compulsive individuals showed diminished neural representations of 

transition types and reduced awareness (by reaction times) to state-state transitions. 

Although the impaired transition knowledge suggests an issue with information 

processing, whether it is indeed caused particularly by an under-reliance of 

accumulated past evidence was not something we could distil in our experiment. 

Our results in chapter 2 suggest that the update of the mental model in compulsive 
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individuals is relatively insensitive to more than just major state changes in the 

environment, but also to positive versus negative feedback (hits/misses) and the 

uncertainty of the current state (relative uncertainty). It is important to note that our 

findings were confined to the mental model (i.e. confidence), rather than actual 

behavioural updates. This distinction may be important for understanding why 

behavioural deficits in compulsivity appear relatively confined to prospective, multi-

step tasks (e.g. model-based planning) where the invocation of a mental model is 

required. Additionally, it may explain why trial-by-trial behavioural responses to 

feedback, like model-free reinforcement learning, remain intact in compulsivity in 

contrast (Gillan et al., 2016). Overall, our results describe a general impairment in 

evaluating and integrating information into the higher-order mental model in 

compulsivity, which may be the common source underlying both metacognitive 

deficits and decision failures observed in high compulsive individuals. 

 

The dysfunctional metacognitive mechanisms we observed here may have 

important insights for understanding a clinical feature that often presents alongside 

compulsivity—obsessional belief. Inflated confidence levels and deficiencies in 

adjusting confidence in response to various feedback sources may contribute to the 

formation and reinforcement of more rigid beliefs. In tentative support to this idea, 

individuals with other disorder diagnoses who struggle with false beliefs such as 

schizophrenia are also overconfident, particularly for errors (Moritz et al., 2014). A 

cognitive model of schizophrenia has also outlined how delusional belief formation 

can arise from dysfunctional metacognitive processes (Joyce et al., 2013). In the 
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current transdiagnostic framework, loadings of obsessionality and schizotypy are 

captured within the same dimension as compulsivity (Gillan et al., 2016). As such, 

we are unable to probe if metacognitive dysfunction would form a transdiagnostic 

mechanism linked to dysfunctional beliefs if distinguished from compulsivity, though 

future work may attend to this. 

 

Understanding how the mental model becomes dysfunctional in compulsivity may 

provide new insights regarding the nature of interaction between obsessions and 

compulsions in OCD, potentially providing new routes towards “breaking” the 

reinforcing cycle of the disorder. Conventional cognitive-behavioural clinical models 

of OCD believe that compulsions are performed in response to the primary issue of 

dysfunctional beliefs (Rachman, 1997; Salkovskis, 1985), e.g. as attempts to resolve 

uncertainties associated with an obsession (Tolin et al., 2001). On the other hand, 

some empirical cross-sectional data suggest the opposite; that obsessions are the 

by-products of compulsive behaviour (Gillan & Sahakian, 2015). Gillan and 

colleagues tracked the interaction of belief and compulsive habitual behaviour in 

OCD patients and healthy controls using a shock avoidance task with physiological 

arousal assessments (i.e. subjective report and skin conductance readings) (Gillan, 

Morein-Zamir, Urcelay, et al., 2014). Participants were first trained to perform actions 

to prevent experiencing shocks associated with stimuli. They were then tested if they 

continued to respond towards the options that were subsequently devalued i.e. show 

persistent avoidance habits. OCD patients’ behaviour with devalued stimuli were 

indistinguishable to controls at the first habit probe after a brief period of training, 
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however at the second habit probe after over-training, they exhibited enhanced 

avoidance habits in comparison to controls. Interestingly, it was only after habit 

behaviour was expressed at the second habit probe that OCD individuals reported 

irrational beliefs of shock threat for devalued options (e.g. “I thought it could still 

shock me”) even though they had accurate task contingency and shock expectancy 

knowledge. These observations suggest that obsessions are perhaps born to 

rationalise the compulsive behaviour. In this thesis, our data implicating the broad 

impairment of the mental model in metacognition and goal-directed control suggest 

a more nuanced view than either of these former models have suggested—that 

obsessions and compulsions might be different manifestations of a common 

metacognitive failure. Further work in this area will ultimately necessitate dynamic, 

longitudinal and causal investigations of the link between metacognitive and goal-

directed processes in compulsivity. 

 

Finally, we endeavoured to assess the specificity of hyperactive error monitoring to 

compulsivity, via the ERN, to further our understanding of the core mechanisms of 

this phenotype. Unfortunately, the ERN data from our last experimental chapter did 

not reveal any of our hypothesized effects, but instead presented a non-significant 

pattern of results.  As such, we concluded that the ERN may be limited in its utility 

as a biomarker for mental health phenomena based on the small effect sizes 

observed. We highlight that ERN studies in the literature have predominantly utilised 

small sample sizes of around N = 20 to 30 cases versus controls and have massive 

variation in their ERN quantification methods; these issues may have led to false 
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positives increasing the effect size of the ERN in psychiatry. In contrast, we ensured 

we were well-powered (N = 196) and applied a rigorous analysis approach by pre-

defining our ERN peak scoring method. Notably, our non-significant ERN effects 

were not an artefact of our analysis choice as all other possible ERN quantification 

methods we investigated post-hoc (in Appendix III) showed the same pattern of 

results.  

 

It was unfortunate that our current transdiagnostic framework did not explain the 

ERN data better. We used these pre-defined, replicable dimensions to allow a clear 

extension to prior work (Gillan et al., 2016; Rouault et al., 2018) and to the other 

experiments in this thesis that adopted the same approach. Additionally, this 

prevented issues arising from overfitting new psychiatric descriptions to our data 

(Gillan & Whelan, 2017; Whelan & Garavan, 2014). Notwithstanding the 

reproducibility issues we observed, it remains a possibility that another 

transdiagnostic, dimensional framework might be more sensitive to ERN 

abnormalities than the one we applied here. For instance, a popular two-factor 

conceptualisation of psychopathology that was born from paediatric psychiatry has 

been utilised in ERN research centres on internalising versus externalising 

dimensions (Krueger, 1999; Krueger et al., 1998). Internalising disorders are 

characterised by negative emotionality, encapsulating mood and anxiety disorders 

(e.g. depression, generalised anxiety disorder, phobias and OCD), whereas 

externalising disorders have prominent behavioural control issues, and comprise of 

aggressive, delinquent and impulsive disorders (e.g. conduct disorder, drug and 
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substance use disorders). As the directional amplitude shifts of the ERN seem to 

cluster in disorder groups that align with this framework (Olvet & Hajcak, 2008), 

several groups have tested (in paediatric samples) this hypothesis (Kessel et al., 

2016; A. Meyer & Klein, 2018; Troller‐Renfree et al., 2016). A recent meta-analysis 

of clinical and subclinical ERN studies generally supported internalising symptoms 

(but not depression) being linked to enhanced ERN amplitudes while externalising 

symptoms (except for alcohol abuse) were associated with lower ERN amplitudes 

(Pasion & Barbosa, 2019). Though this framework is attractive, it requires more 

stringent checks to promote validity, reliability and replicability. Across studies that 

have tested this framework in the ERN, there was no consensus as to how 

internalising or externalising phenotypes were defined. Notably, many studies do not 

account for heterogeneity within disorder groupings by simply comparing clusters of 

disorder categories which fall into either the internalising or externalising spectrum, 

which is susceptible to the usual criticisms of case-control approaches.  

 

Clinical implications 

Currently, many treatments for OCD exist—drug therapies (Del Casale et al., 2019), 

psychotherapy (Hezel & Simpson, 2019) and even brain activity augmentation  

interventions such as deep brain stimulation for treatment resistant cases (Rapinesi 

et al., 2019). Unfortunately, our understanding of the neurobiological basis of OCD 

and its treatments are still lacking. It is therefore unsurprising that these treatments 

suffer from an efficacy issue. For instance, the first line interventions for OCD 

patients such as selective serotonin reuptake inhibitors (SSRIs) and exposure 
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response prevention (ERP) report that approximately only 50-68% of patients have 

significant improvement in their symptoms post-treatment (Eddy et al., 2004; Fisher 

& Wells, 2005b; Stengler-Wenzke et al., 2006). Moreover, a large proportion of those 

patients who respond to treatment do not reach remission. Can computational 

psychiatry help us understand and leverage the mechanisms behind successful 

treatment for OCD? We acknowledge that the dysfunctional mechanisms we 

implicate in compulsivity in the outputs of this thesis (as well as those in the 

literature) are correlational in nature. As such, first probing the causality of these 

associations would be key towards translating these insights into the clinic. 

Nonetheless, we outline potential ways how our detailed characterisation of the 

metacognitive and goal-directed control mechanisms involved in compulsivity may 

impact treatment considerations. 

 

Firstly, our findings reveal a new potential therapeutic target for compulsivity—

metacognition. Metacognitive therapy (MCT) for OCD exists (Clark, 2005; Fisher & 

Wells, 2005a); but these treatments are currently focused on modifying intrusive 

thoughts and thereby the necessity of performing compulsive rituals. Our results 

pertain not to the content of one intrusion or another, but to the general ability of 

patients to construct accurate mental representations of environmental contingency, 

or in other words, cause-and-effect. It is possible that newer metacognitive 

treatments might focus on improving the patients’ capability to globally discriminate 

between correct or incorrect inferences and as a result, might prove more beneficial 

in the long term than modifying specific idiosyncratic OCD beliefs that are context 
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dependent, subject to change or relapse. Promisingly, recent study has shown that 

domain-general metacognition can be improved by adaptive training (Carpenter et 

al., 2019), however whether that would be therapeutically relevant and lead to 

symptom improvement is an open question for future research to examine. 

Additionally, the administration of propranolol, which causes noradrenaline blockade, 

has been found to enhance metacognitive performance (Hauser, Allen, Purg, et al., 

2017). This may potentially be a novel pharmacological therapeutic intervention for 

compulsivity. Though the use of propranolol is yet untested in OCD treatment, 

clomipramine (a common OCD medication) also impacts noradrenergic functions 

(Asakura et al., 1982)—this may be a mechanism by which its therapeutic relief 

manifests. 

 

Secondly, our data offers new insights to cognitive paradigms that have the potential 

to investigate mechanisms underlying symptom improvement after treatment for 

compulsivity. As impaired goal-directed control is the current prominent 

neurocognitive model of compulsivity, the two-step reinforcement learning task has 

been trialled as a paradigm that could be of use to understand ERP therapy 

outcomes (Wheaton et al., 2019). However, it was observed that model-based 

planning performance does not improve after ERP therapy in OCD individuals 

despite an improvement in symptoms. It was suggested that ERP may not affect its 

efficacy through the goal-directed processing system or that goal-directed failures 

are a trait dependent deficit reflecting vulnerability for compulsivity. Given that we 

highlight that a deficiency in the mental model is a core feature for compulsivity, 
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future studies may consider focusing on testing whether the status of the mental 

model is augmented with therapy. 

 

Thirdly and perhaps most importantly, these data suggest it may be time to start 

considering transdiagnostic approaches to treatment. For example, treatments 

might be more effective if issued on the basis of severity of compulsivity rather than 

discrete disorder categories where patients with the same diagnosis of OCD can 

differ markedly in their levels of anxiety, obsessionality and compulsivity. A reason 

why therapeutic methods have not been as efficacious as hoped is no doubt partly 

due to the lack of biological validity of both treatment interventions and the current 

psychiatric nosology (Abramowitz et al., 2000; Overbeek et al., 2002; Perugi et al., 

2002). By describing patients along a continuum of compulsivity that has a well-

defined neurobiological profile, it may be easier to find treatments that target the 

implicated neural mechanism and that are best suited for the individual.  

 

Moreover, in principle, transdiagnostic interventions might be more cost-effective for 

healthcare systems as a smaller set of transdiagnostic protocols can replace an 

arguably much larger range of disorder-specific treatments. Currently, there are 

some emerging treatment protocols have that moved beyond focusing on single 

disorder groupings. A notable example is the Unified Protocol for Transdiagnostic 

Treatment of Emotional Disorders that addresses the hypothesized underlying 

mechanism of emotion dysregulation common to affective disorders such as anxiety 

disorders and depression (Barlow, Farchione, Sauer-Zavala, et al., 2017). There is 
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some evidence in favour of this approach, especially in its ability to replace multiple 

diagnosis-specific interventions without losing efficacy (Barlow, Farchione, Bullis, et 

al., 2017), though whether it is superior compared to other treatment modalities 

remains to be seen (Sakiris & Berle, 2019).  

 

Conclusions 

In summary, this thesis sought to understand the neurocognitive mechanisms of 

compulsivity. Over three experiments, we adopted a transdiagnostic perspective. In 

two of three experiments, we highlighted the clear advantages of the approach over 

classic disorder-based frameworks. In addition to yielding new insights into the core 

mechanisms posited to underlie compulsivity, we undertook a rigorous approach 

and established explicit replications of prior studies to all of our designs. We were 

able to reproduce associations between compulsivity and goal-directed deficits and 

metacognition. In the only study that did not provide clear support for the 

transdiagnostic method, we found that more general reproducibility issues were, too, 

at play. We propose that compulsivity is an important transdiagnostic symptom 

dimension that is characterised by failures in curating the meta-model. Our findings 

may explain the well-documented failures of behavioural control that have been 

previously observed in both OCD and compulsivity. These findings not only advance 

transdiagnostic theories of mental illness but it is hoped that they will open new 

therapeutic opportunities for consideration. 
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Appendices 

 

Appendix I: Supplemental information for Chapter 2 

 

A.I. Supplemental Methods 

 

Exclusion criteria. Participants were excluded if they failed any of the following: (i) 

In the behavioural task, the confidence scale indicator would always start at either 

25 or 75 on every trial. Participants who left their confidence rating as the default 

score for more than 60% of the trials (n > 180 trials) were excluded (N = 42). (ii) The 

task was also reset from the beginning if confidence ratings were left as the default 

score for >70% of the first 50 trials (56 participants (9.82%) restarted the task at 

least once). Those who had their task reset >5 times were excluded (N = 6). (iii) 

Participants who had more than 50% correlation between the default score and their 

selected confidence rating were excluded (N = 109). (iv) Participants with a lower 

mean confidence where the previous trial was correct than incorrect were excluded 

(N = 66). (v) Participants who incorrectly responded to a “catch” question within the 

questionnaires: “If you are paying attention to these questions, please select ‘A little’ 

as your answer” were excluded (N = 16).  
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Medication status. Participants were asked if they were currently taking medication 

for a mental health issue, and if so, to indicate the name, dosage and duration. 41 

(9.38%) participants were currently medicated.  

 

Action-confidence coupling. First, we measured the coupling between action 

updates (i.e. the tendency to move the bucket) and confidence. Action (the absolute 

difference of bucket position on trial t and t+1) was the dependent variable and 

Confidence (confidence level on trial t+1) was the independent variable in a trial-by-

trial regression analysis with age, gender and IQ as fixed effects co-variates (as with 

all subsequent analyses). Within-subject factors (the intercept and main effect of 

Confidence) were taken as random effects (i.e. allowed to vary across subjects). 

Confidence was z-scored within-participant, while the fixed effect predictors were z-

scored across participant. If action and confidence are appropriately coupled, 

participants should move the bucket more (larger Action) when their confidence 

levels were low, producing a significant negative main effect of Confidence on 

Action. In the syntax of the lmer function, the regression was: Action ~ Confidence * 

(Age + IQ + Gender) + (1 + Confidence | Subject).  

 

We then tested if psychiatric symptom severity was associated to changes in action-

confidence coupling by including the total score for each questionnaire 

(QuestionnaireScore, z-scored) as a between-subjects predictor in the model above. 

Separate regressions were performed for each individual symptom due to high 

correlations across the different psychiatric questionnaires. The extent to which 
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questionnaire total scores contribute to changes in action-confidence coupling is 

indicated by the presence of a significant Confidence*QuestionnaireScore 

interaction. A positive interaction effect indicates decreased action-confidence 

coupling (i.e. decoupling), while a negative interaction effect indicates greater 

action-confidence coupling. The model was specified as: Action ~ Confidence * 

(QuestionnaireScore + Age + IQ + Gender) + (1 + Confidence | Subject). For the 

transdiagnostic analysis, we included all three dimensions in the same model, as 

correlation across variables was lessened in this formulation and thus more 

interpretable (only 3 moderately correlated variables r = 0.34 to 0.52, instead of 9 

that ranged from r = 0.13 to 0.84). We replaced QuestionnaireScore in the model 

formula described previously with three psychiatric dimensions (AD, CIT, SW) 

entered as z-scored fixed effect predictors. The model was: Action ~ Confidence * 

(AD + CIT + SW + Age + IQ + Gender) + (1 + Confidence | Subject). 

 

Action and confidence. To analyse the basic relationship between task-related 

variables and psychiatric dimensions, the analysis approach was the same, but 

simpler. Dependent variables were: 1) Size of bucket updates (Action) and 2) 

reported confidence (Confidence). The models were simply: Task Variable ~ AD + 

CIT + SW + Age + IQ + Gender + (1 | Subject).  

 

Computation model describing behaviour dynamics. In the behavioural task, 

participants were required to learn the mean of the underlying generative distribution 

in order to position their bucket at where they hope to catch the greatest number of 
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particles. Their belief on where the particle landing distribution mean could be guided 

by 1) information gained from the most recent outcome (i.e. moving the bucket with 

every small shift in particle location), 2) surprising large changes signalling a change 

in mean distribution (i.e. change-points) and 3) their uncertainty of the distribution 

mean based on particle landing location experience over trials. To separate these 

contributions, a quasi-optimal Bayesian computational learning model was used to 

estimate these parameters thought to underlie task dynamics with MATLAB R2018a 

(The MathWorks, Natick, MA) using functions from Vaghi et al. (Vaghi et al., 2017). 

This included PEb (model prediction error, an index of recent outcomes), CPP 

(probability that a trial was a change-point, a measure representing the belief of a 

surprising outcome) and RU (relative uncertainty, the uncertainty owing to the 

imprecise estimation of the distribution mean; labelled as (1-CPP)*(1-MC) in Vaghi 

et al. (Vaghi et al., 2017)). These parameters (where PEb is taken as its absolute) 

together with a Hit categorical predictor (previous trial was a hit or miss) were used 

to regress participant adjustments against the benchmark Bayesian model to 

investigate participant adjustments in reported confidence (Confidence; z-scored 

confidence level on trial t) and bucket movements (Action) according to the particle 

landing locations experienced. 

 

Influence of parameters on action and confidence. For the regression on Action, 

following Vaghi et al. (Vaghi et al., 2017) and prior literature (McGuire et al., 2014; 

Nassar et al., 2010, 2016), all predictors except PEb were implemented as 

interaction terms with PEb. For Confidence, we used a similar regression model but 
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without the interaction term with PEb and with the regressand and predictors z-

scored at participant level. Regressions were constructed as mixed-effect models 

controlled for age, IQ and gender, with the interaction term and main effect of 

regressors as random effects. The model syntax was written as: Dependent Variable 

~ (PEb + CPP + RU + Hit)*(Age + IQ + Gender) + (1 + PEb + CPP + RU + Hit | 

Subject).  

 

To include psychiatric symptom severity in the same analysis model, we entered 

each psychiatric questionnaire score as an additional z-scored fixed effect predictor 

into the basic model above, where the equation was: Dependent Variable ~ (PEb + 

CPP + RU + Hit)*(QuestionaireScore + Age + IQ + Gender) + (1 + PEb + CPP + RU 

+ Hit | Subject). For confidence, a positive interaction between a symptom score and 

PEb, CPP, RU indicates that higher scores on that symptom are associated with a 

decrease in influence of these parameters on confidence. The converse was 

applicable for significant Hit*QuestionaireScore interactions (as main effect of Hit on 

Confidence is opposite signed). For action, as main effect of the parameters on 

Action is inverse from the main effects on Confidence, significant 

parameter*QuestionaireScore interactions are interpreted in reverse. For the 

transdiagnostic analysis, we included all three dimensions in the same model by 

replacing QuestionnaireScore with three psychiatric dimensions (AD, CIT, SW) 

entered as z-scored fixed effect predictors. The model was: Dependent Variable ~ 

(PEb + CPP + RU + Hit)*( AD + CIT + SW + Age + IQ + Gender) + (1 + PEb + CPP 

+ RU + Hit | Subject). 
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For visualization purposes, the main effects of the four predictors were correlated 

with CIT severity, where Spearman’s correlation was used to measure the 

association between symptom dimension severity and the influence of the learning 

parameters on action update/confidence (Supplemental Figure A.I.S5).  

 

Influence of metacognitive parameters on action-confidence coupling in 

compulsivity. We investigated how confidence bias and participants’ sensitivity to 

feedback on confidence were related to action-confidence coupling. We obtained 

individual beta coefficients from the basic regression model of the model parameters 

(PEb, CPP, RU and Hit) on confidence from the mixed model equation: Confidence 

~ (PEb + CPP + RU + Hit)*( AD + CIT + SW + Age + IQ + Gender) + (1 + PEb + CPP 

+ RU + Hit | Subject), individual beta coefficients regression of action on confidence 

from the equation: Action ~ Confidence * (Age + IQ + Gender) + (1 + Confidence | 

Subject) and participants’ mean confidence level. We regressed each subjects’ 

coefficients for the effect of model parameters on confidence and their mean 

confidence level against action-confidence in a linear regression, with all regressors 

taken as z-scored fixed effect predictors. The equation was: Action on Confidence 

~ PEb on Confidence + CPP on Confidence + RU on Confidence + Hit on Confidence 

+ Mean Confidence. To specifically examine how these factors were related to 

action-confidence coupling in compulsivity, we compared the main effect of CIT on 

action-confidence coupling in a model with above metacognitive factors: Action on 

Confidence ~ PEb on Confidence + CPP on Confidence + RU on Confidence + Hit 
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on Confidence + Mean Confidence + AD + CIT + SW and without the above 

metacognitive factors: Action on Confidence ~ AD + CIT + SW. Heteroskedasticity-

consistent standard errors for all coefficients are reported by the vcovHC function 

from the sandwich package in R. 

 

As expected, action-confidence coupling was significantly related to PE on 

confidence: β = 1.91, SE = 0.18, p < 0.001, CPP on confidence: β = 4.50, SE = 0.40, 

p < 0.001, RU on confidence: β = -1.21, SE = 0.37, p = 0.001, Hit on confidence: β 

= -1.53, SE = 0.14, p < 0.001) and marginally to confidence bias (β = -0.13, SE = 

0.07, p = 0.07). When we included compulsivity in the model above, we found that 

the original effect of compulsivity on action-confidence coupling was reduced but 

remained significant (CIT: β = 0.32, SE = 0.09, p = 0.002, corrected), suggesting 

that decreased action-confidence coupling is only partially explained by the multiple 

metacognitive parameters of the task. 
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A.I. Supplemental Figures and Tables 

 

 

Supplemental Figure A.I.S1. Behavioural results. Across participants, the 

distribution of: 

(a)  Mean accuracy. 

(b)  Mean action (the tendency to move the bucket). 

(c)  Mean confidence level. 

(d) Confidence ratings for correct (green) and incorrect (red) trials. Vertical lines 

denote mean confidence level for respective trial type. 
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Across participants, mean accuracy ranged from 42.33% to 79.00% (mean = 

67.42%, SD = 5.38%; Figure A.I.S1a), mean action (tendency to move bucket 

position) ranged from 5.88 to 40.44 (mean = 13.74, SD = 4.91, Figure A.I.S1b) and 

mean confidence level ranged from 7.21 to 99.39 across participants (mean = 56.19, 

SD = 19.85; Figure A.I.S1c). Performance accuracy accounted for only 1.7% of the 

variance in confidence levels (between-subject correlation: r = 0.13, p < 0.009). 

Participants were using the confidence scale appropriately, giving higher confidence 

after correct trials (mean = 62.42, SD = 28.53), and lower confidence after incorrect 

trials (mean = 43.98, SD = 30.45) (Figure A.I.S1d).   
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Supplemental Figure A.I.S2.  
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Supplemental Figure A.I.S2. Demographics and self-reported psychopathology 

spread. 

 (a)  Age, IQ and questionnaire score distributions across participants.  

(b) Correlation matrix of mean scores of the nine questionnaires, age and IQ. Colour 

scale indicates correlation coefficient, size of colour patch indicates significance. X 

denotes correlation fails 95% Confidence Interval. 
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 PEb CPP RU Hit 

PEb 1    

CPP 0.68 1   

RU 0.09 0.46 1  

Hit -0.55 -0.44 -0.14 1 

Supplemental Table A.I.S1. Spearman’s correlation between Bayesian Model 

Parameters (and Hit). 
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Predictor β (SE) 95% CI t-value p-value 

 Regression on Action  

PEb 0.33 (0.02) [0.27, 0.38] 11.61 < 0.001 *** 

CPP 0.46 (0.02) [0.41, 0.50] 20.06 < 0.001 *** 

RU 1.37 (0.08) [1.21, 1.52] 17.25 < 0.001 *** 

Hit -0.77 (0.02) [-0.81, -0.73] -40.54 < 0.001 *** 

 Regression on Confidence 

PEb -0.04 (0.01) [-0.06, -0.02] -3.57 < 0.001 *** 

CPP -0.20 (0.02) [-0.24, -0.17] -12.16 < 0.001 *** 

RU -0.24 (0.01) [-0.27, -0.21] -17.15 < 0.001 *** 

Hit 0.26 (0.01) [0.23, 0.29] 22.84 < 0.001 *** 

Supplemental Table A.I.S2. Effects of Bayesian Model Parameters on Action and 

Confidence. SE = standard Error, CI = confidence interval. 
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Supplemental Figure A.I.S3.
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Supplemental Figure A.I.S3. Associations between age, gender and IQ with 

accuracy, action update, reported confidence, action-confidence coupling or the 

influence of the model predictors (PEb, CPP, RU) and Hit on confidence/action 

update. Error bars denote standard errors. The Y-axes indicates the 

change/percentage change in each dependent variable as a function of 1 standard 

deviation increase of demographic scores. *p < 0.05, **p < 0.01, ***p < 0.001.  

 

We tested in an exploratory fashion for relationships of task accuracy, action and 

confidence with age, IQ and gender (Figure A.I.S3). IQ was found to predict better 

performance (β = 0.07, SE = 0.01, 95% CI [0.05, 0.09], p < 0.001), lower action 

updating, (β = -1.16, SE = 0.23, 95% CI [-1.62, -0.71], p < 0.001) and lower 

confidence (β = -3.97, SE = 0.92, 95% CI [-5.77, -2.17], p < 0.001). Additionally, 

gender (male) was associated with higher confidence (β = 8.43, SE = 1.85, 95% CI 

[4.81, 12.06], p < 0.001).  

 

IQ, age and gender were controlled for in all analyses. Increased action-

confidence coupling was associated to age (β = -0.70, SE = 0.21, 95% CI [-1.10, -

0.29], p < 0.001), and IQ (β = -0.87, SE = 0.21, 95% CI [-1.27, -0.46], p < 0.001) 

while decreased in males (β = 0.97, SE = 0.42, 95% CI [0.16, 1.78], p = 0.02). For 

the model-based trial-wise analyses, age was related to an increased influence of 

CPP (β = -0.03, SE = 0.01, 95% CI [-0.05, -0.01], p = 0.02), RU (β = -0.02, SE = 

0.01, 95% CI [-0.04, -0.002], p = 0.03) and Hit (β = 0.02, SE = 0.01, 95% CI [0.01, 

0.04], p = 0.03) on confidence. Males were associated to an increased influence of 
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Hit (β = -0.05, SE = 0.02, 95% CI [-0.08, -0.02], p = 0.001) on confidence, while IQ 

predicted increased influence of CPP (β = -0.05, SE = 0.01, 95% CI [-0.06, -0.02], p 

< 0.001), RU (β = -0.05, SE = 0.01, 95% CI [-0.07, -0.03], p < 0.001) and Hit (β = 

0.02, SE = 0.01, 95% CI [0.0003, 0.03], p = 0.05) on confidence. For action update, 

only IQ effects were significant – it was related to an increase in CPP (β = 0.08, SE 

= 0.02, 95% CI [0.05, 0.11], p < 0.001) and RU (β = 0.15, SE = 0.05, 95% CI [0.04, 

0.25], p = 0.006) influence, and decreased PEb (β = -0.07, SE = 0.02, 95% CI [-0.11, 

-0.03], p < 0.001) and Hit (β = 0.07, SE = 0.01, 95% CI [0.05, 0.10], p < 0.001) 

influence on action update.  
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Supplemental Figure A.I.S4. Associations between accuracy (hit (1) or miss (0)) 

with questionnaire scores or transdiagnostic dimensions, controlled for age, IQ and 

gender. Error bars denote standard errors. The Y-axis indicates the change in 

accuracy as a function of 1 standard deviation of questionnaire/dimension scores. 

op < 0.05, oop < 0.01 uncorrected, *p < 0.05. Results are Bonferroni corrected for 

multiple comparisons over number of questionnaires/dimensions.
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Supplemental Figure A.I.S5.
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Supplemental Figure A.I.S5. Confidence level/action update was predicted by 

absolute model prediction error (PEb), change-point probability (CPP), relative 

uncertainty (RU) and hit/miss categorial regressor (Hit), controlled for IQ, age and 

gender. Coefficient estimates from the model were correlated with ‘compulsive 

behaviour and intrusive thought’ (CIT) severity. 

(a) CIT was found to be associated with significantly diminished influence of CPP, 

RU and Hit on z-scored confidence. PEb, CPP and RU on confidence coefficients 

are inverted to illustrate direction of effects. PEb: rs = 0.003, p = 1.00; CPP: rs = -

0.19, p < 0.001; RU: rs = -0.17, p < 0.001; Hit: rs = -0.15, p = 0.004.  

(b) In contrast, CIT was found not linked to changes in the influence of any of model 

parameters on action update. For plotting purposes, we show the association of 

parameter and compulsivity without controlling for AD and SW. PEb: rs = 0.05, p = 

0.99; CPP: rs = -0.10, p = 0.14; RU: rs = 0.01, p = 1.00; Hit: rs = 0.09, p = 0.17.  

Circles represent coefficients of individual participants for model parameters from a 

basic mixed model of confidence/action update ~ regressors*demographics + (1 + 

regressors|subject) (x-axis), against their CIT score (y-axis) (see Methods). Hit on 

action update coefficients are inverted to illustrate direction of effects, such that CIT 

is linked to an increase influence of hits on action-updating (which is negative in 

direction). CI = Confidence interval. op < 0.05, uncorrected, *p < 0.05, **p < 0.01, 

***p < 0.001. Correlations are Spearman’s rank correlations and results are 

Bonferroni corrected for multiple comparisons over the three dimensions. See also 

Figure 2.4. 
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Predictor β (SE) SE t-value p-value 

On Action 

PEb -0.0005 0.02 -0.03 0.98 

CPP -0.01 0.01 -0.79 0.43 

RU 0.03 0.04 0.82 0.41 

Hit -0.01 0.01 -1.27 0.21 

On Confidence 

PEb -0.001 0.002 -0.58 0.57 

CPP 0.04 0.007 6.07 < 0.001 *** 

RU 0.04 0.007 6.36 < 0.001 *** 

Hit -0.23 0.006 -3.95 < 0.001 *** 

Supplemental Table A.I.S3. Effects of ‘compulsive behaviour and intrusive thought’ 

(CIT) severity on Bayesian Model Parameters Coefficients on Action and 

Confidence, with heteroskedasticity-consistent standard errors. Model parameters 

on action or confidence coefficients were extracted from the basic mixed model 

action update/confidence ~ regressors*demographics + (1 + regressors|subject)  

and then regressed in a single linear model by all three psychiatric dimensions 

anxious-depression (AD), CIT and social withdrawal (SW) for each model 

parameter. Heteroskedasticity-consistent standard errors were estimated for each 

model by the vcovHC function from the sandwich package in R. Only CIT effects are 

reported here. In effect, results are similar to Supplemental Figure A.I.S5, but with 

all dimensions scores included in the same model. SE = standard Error, CI = 

confidence interval. 
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Supplemental Figure A.I.S6. Correlations between item loadings obtained from the factor analysis in Gillan et al. (2016) 

and the present study for each psychiatric symptom dimension. Questionnaire item loadings were highly correlated for all 

three factors (Anxious-depression: r = 0.94; Compulsive behaviour and intrusive thought: r = 0.85, Social withdrawal: r = 

0.95), supporting the reproducibility of the psychiatric symptom dimensions. 
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Transdiagnostic symptom dimensions are reproducible. Transdiagnostic 

dimension scores (‘Anxious-depression’, ‘Compulsive behaviour and intrusive 

thoughts’, ‘Social withdrawal’) in the present study were derived from weights 

obtained from a prior larger study (N = 1413) (Gillan et al., 2016). This 3-factor 

structure was previously reproduced in a smaller independent sample (N = 497) 

(Rouault et al., 2018), and here we again replicated similar psychiatric dimensions 

with our current data (N = 437) with the factor analysis (Figure A.I.S6). For further 

details of the factor analysis methodology, see Gillan et al. (Gillan et al., 2016).   
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Supplemental Figure A.I.S7. Regression analyses of (a) human learning rate (ratio 

of bucket movement and task prediction error) and (b) action adjustments in OCD, 

in a model that controlled for age, IQ and gender and in a model that did not. Error 

bars denote standard errors. The Y-axes indicate the change/percentage change in 

dependent variable as a function of 1 standard deviation of OCD symptom scores. 

^p < 0.07, **p < 0.01, ***p < 0.001. Results are not Bonferroni corrected for multiple 

comparisons. 

 

Action updating effects in OCD with/without controlling for demographics. 

Vaghi et al. (Vaghi et al., 2017)  reported that OCD patients exhibited a higher mean 

learning rate and that their action updates were more strongly influenced by recent 

information (PEb) and less to large unexpected environmental changes (CPP). In 

the course of exploring the source of this discrepancy with our data, we found that 

when we repeated our analysis without controlling for age, gender and IQ, some of 

their effects were recovered here. OCD symptoms were associated with changes in 

learning and sensitivity to both PEb and CPP in action updating. Specifically, LRh 
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(human learning rate) (β = 0.05, SE = 0.03, 95% CI [-0.003, 0.10], p = 0.07, uncorr.) 

and the influence of PEb on action showed a trend towards a positive association 

with OCD symptoms (β = 0.04, SE = 0.02, 95% CI [-0.001, 0.07], p = 0.06, uncorr.) 

and the influence of CPP on action showed a negative association with OCD 

symptoms (β = -0.04, SE = 0.02, 95% CI [-0.07, -0.01], p = 0.007, uncorr.). These 

discrepancies suggest that demographic characteristics perhaps partially explain 

the pattern of action updating effects observed in the prior patient study (Figure 

A.I.S7). 
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Supplemental Figure A.I.S8. Regression model where confidence updating was 

predicted by action updating. Dots represent coefficient estimates for individual 

participants. Red marker indicates mean and SD. These coefficients were correlated 

with OCD symptom severity, where confidence-action updating coupling was 

observed to decrease with increasing OCD symptom severity (r = -0.18, p < 0.001). 

 

Action-confidence decoupling analysis. Although this has no bearing on our 

results (or theirs), we note that Vaghi et al. (Vaghi et al., 2017) defined action-

confidence coupling slightly differently to how we chose to define it in the present 

paper – they used confidence updating (i.e. absolute difference between z-scored 

confidence from trial t and t-1), instead of the reported confidence level on trial t. We 

suggest that z-scored confidence ratings (rather than their change from trial to trial) 

are more appropriate because this accounts better for instances where a person has 

several relatively large PEs in a row (as they figure out where to place the bucket), 

and should thus not rationally ‘change’ their confidence rating in response to these 

PEs, but maintain it at a low level. Although we flag this for the interested reader, we 
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underscore that the two measures are correlated and indeed when we use their 

definition, we similarly show that self-reported OCD symptom severity predicts 

confidence-action updating decoupling (r = -0.17, t = -3.58, 95% CI [-0.26, -0.07], p 

< 0.001, Figure A.I.S8).
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Appendix II: Supplemental information for Chapter 3 

 

A.II. Supplemental Methods 

 

Disorder prevalence (M.I.N.I.). After exclusion, 80 participants (41.67%) 

completed the M.I.N.I., which was introduced part-way through the study. Of 

these participants, 35 (43.75%) presently met the criteria for one or more 

disorder. Broken down by recruitment arm, 7 (100%) from the clinical arm met 

criteria, while 28 (38.36%) from university channels met criteria. This rate is close 

to published reports on the prevalence of mental health disorders in college 

student samples (Auerbach et al., 2018; Evans et al., 2018). Of the total sample, 

33 (17.19%) were currently medicated for a mental health issue. Broken down 

by recruitment arm, all individuals recruited from the clinic were medicated, while 

26 (14.05%) of those recruited through normal channels were medicated. Further 

diagnostic information of the sample is summarised in Supplemental Table 

A.II.S3.  

 

P300 and transition type. We tested if P300 amplitude could differentiate rare 

versus common transitions (Transition: rare: 1, common: 0), and whether the 

difference in amplitude between transition type was related to z-scored model-

based estimates (of the logistic regression: MB) and to compulsivity (CIT). 

controlled for other psychiatric dimensions (anxious-depression: AD and social 

withdrawal: SW). The equations were: 

 

EEG ~ Transition*MB + (Transition + 1 | Subj), and 
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EEG ~ Transition*(CIT + AD + SW) + (Transition + 1| Subj) 

 

The extent to which model-based control/compulsivity is related to the difference 

in P300 amplitude of rare versus common transitions was indicated by the 

presence of a significant Transition*MB or Transition*CIT interaction.  

 

Alpha power and transition type. Similar to the approach of P300 and 

transition type, we tested if alpha power could differentiate rare versus common 

transitions (Transition: rare: -1, common: 0), and whether the difference in power 

between transition type was related to z-scored model-based estimates (MB) and 

to compulsivity (CIT), controlled for other psychiatric dimensions (AD and SW). 

 

EEG ~ Transition*MB + (Transition + 1 | Subj), and 

EEG ~ Transition*(CIT + AD + SW) + (Transition + 1| Subj) 

 

The extent to which model-based control/compulsivity is related to the difference 

in alpha power of rare versus common transitions was indicated by the presence 

of a significant Transition*MB or Transition*CIT interaction.  

 

Theta and behavioural control. We tested if single-trial theta power was 

associated with model-based estimates (MB) or to compulsivity (CIT, controlled 

for AD and SW) by taking them as z-scored main regressors in the models: 

 

EEG ~ MB + (1 | Subj), and 

EEG ~ (CIT + AD + SW) + (1| Subj) 
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The extent to which model-based control/compulsivity was related to theta in first 

stage choice was indicated by the presence of a significant MB or CIT main 

effect. 

 

Controlling for age and IQ. Age and IQ are known to covary with model-based 

learning (Gillan et al., 2016). Here, only IQ was significantly associated model-

based learning (β = 0.12, SE = 0.03, p < 0.001); age was not (β = -0.04, standard 

error (SE) = 0.03, p = 0.30). Nonetheless, inclusion of both variables did not 

change the pattern of our main findings. Reduced goal-directed control was 

linked to compulsivity (β = -0.08, SE = 0.04, p = 0.03) and individuals high in 

model-based control showed larger alpha power differences between the two 

transition types over the three rolling time bins beginning from the transition 

(planet) (-1000ms to 0ms: β = 0.03, SE = 0.02, p = 0.06) to the end of choice 

feedback (0ms to 1000ms: β  = 0.04, SE = 0.01, p = 0.009; 1000ms to 2000ms: 

β = 0.05, SE = 0.02, p = 0.01). 
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A.II. Supplemental Figures and Tables 

 

Supplemental Figure A.II.S1. Histogram of demographics (age, gender and IQ) 

and total questionnaire scores across participants. Y-axes of each plot indicates 

the number of participants. 
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Alcohol 

Addiction 
Apathy Depression 

Eating 

Disorder 
Impulsivity OCD Schizotypy 

Social 

Anxiety 

Trait 

Anxiety 
Age IQ 

Alcohol Addiction            

Apathy 0.13           

Depression 0.09 0.64          

Eating Disorder 0.07 -0.008 0.17         

Impulsivity 0.22 0.47 0.36 0.19        

OCD -0.08 0.31 0.43 0.31 0.30       

Schizotypy 0.04 0.49 0.61 0.30 0.55 0.56      

Social Anxiety -0.09 0.29 0.43 0.26 0.19 0.47 0.50     

Trait Anxiety 0.04 0.57 0.79 0.14 0.34 0.47 0.66 0.46    

Age -0.17 -0.03 -0.15 -0.24 -0.10 -0.14 -0.18 -0.13 -0.11   

IQ -0.10 -0.03 -0.05 0.03 -0.24 -0.02 -0.12 -0.007 0.006 -0.19  

 

Reliability 0.87 0.86 0.86 0.87 0.81 0.90 0.86 0.92 0.93   

Supplemental Table A.II.S1. Pearson’s correlations between total questionnaire scores and demographics (age and IQ). Cronbach's 

Alpha was used to calculate reliability for questionnaires. 
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 AD CIT SW 

AD    

CIT 0.33   

SW 0.37 0.42  

Supplemental Table A.II.S2. Pearson’s correlations between transdiagnostic 

dimensions scores (AD: ‘anxious-depression’, CIT: ‘compulsive behaviour and 

intrusive thought’, SW: ‘social withdrawal’). 
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Supplemental Figure A.II.S2. First stage stay probabilities. Model-based 

behaviour is reflected as the probability of repeating the first stage choice (stay) 

as a function of the occurrence of a transition from the previous trial (common: 

70%, rare: 30%) and whether a reward was received (reward, non reward). In a 

purely model-free learner, stay probabilities after reward should be higher than 

when no reward was presented regardless of transition type. In a purely model-

based learner, stay probabilities after common-reward and rare-non reward 

should be higher than common-non reward and rare-reward. In our empirical 

data here, the stay probabilities obtained across conditions is a mix of both 

model-based and model-free behaviour. Error bars reflect standard errors of 

mean. 
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Supplemental Figure A.II.S3. Second stage stimulus-locked P300 and 

transition type. Grand average waveforms of rare and common trials locked to 

second stage stimuli (aliens). Waveform is baselined -200ms to 0ms. The mean 

amplitude for stimulus-locked P300 was obtained over 4 centro-parietal 

electrodes (D16 (CP1), A3 (CPz), B2 (CP2), A4) as indicated by the white dots 

in the topography plot.  
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Supplemental Figure A.II.S4. Second stage transition-locked grand average 

ERP waveforms comparing rare versus common transitions. Amplitude was 

measured from a mean over 4 centro-parietal electrodes (D16 (CP1), A3 (CPz), 

B2 (CP2), A4). At 0ms, transitioned states (planets) appeared, followed by 

second stage stimuli (aliens) at 1000ms. Parietal ERP did not differ between rare 

versus common transitions after the states (planet) were presented and before 

the aliens appeared, unlike parietal-occipital alpha (see Figure 3). Waveform in 

this plot is similar to that of Figure S3, except that it is baseline-corrected to -200 

to 0ms before transition onset. 
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Supplemental Figure A.II.S5. Response-locked P300 and transition type. 

Topography plot represents the P300 component -100ms to 0ms before second 

stage response. White dots indicate parietal electrode sites (A4, A5, A19 (Pz), 

A32) where the positive component was measured. Grand average second stage 

P300 is plotted response-locked comparing the waveforms following rare versus 

common transitions. Single-trial analyses indicate that the P300 amplitude, 

measured as the mean amplitude -100ms to 0ms (shaded grey), does not 

distinguish transition type (β = -0.09, SE = 0.08, p = 0.23). 
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Supplemental Figure A.II.S6. First stage alpha power. Topography and line 

plot (locked to first-stage rockets) show alpha depression during the making a 

choice at the first stage. White dots on the topography plot indicate occipital 

electrode sites (A18, A19 (Pz), A20, A21, A31) where alpha was measured for 

both first and second stages.  

 

We found that alpha power at first stage (See Figure A.II.S7 for alpha power 

quantification details) was more suppressed in high compulsive individuals (β = 

-0.56, SE = 0.03, p = 0.002). However, this effect was not associated to model-

based planning (β = 0.13, SE = 0.02, p = 0.43) nor RT differences in transition 

types (β = -0.01, SE = 0.16, p = 0.94).  
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Supplemental Figure A.II.S7. First and second stage alpha power and their relationship with total questionnaire scores and 

psychiatric dimensions (AD: ‘anxious-depression’; CIT: ‘compulsive behaviour and intrusive thought’, SW: ‘social 

withdrawal’). In both stages, alpha decrease was associated to more than one questionnaire but was ultimately specific to the 

compulsive dimension (CIT, as opposed to AD and SW). The Y-axes shows the change in alpha power (µV2) as a function of 1 

standard deviation increase of psychiatric questionnaire/dimension scores. Error bars denote standard errors. *p < 0.05, **p < 0.01, 

***p < 0.001.  
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Single-trial stimulus-locked alpha estimates was measured as the mean power 

±250ms centered around the average latency of the negative peak, specific to each 

individual, and found within a search window defined from 0ms to 1000ms after 

stimulus (for first stage epoch: rockets, for second stage epoch: aliens) onset. We 

tested if alpha power changed as a function of total questionnaire scores 

(QuestionnaireScore, z-scored). Separate mixed effects regression models were 

performed for each individual questionnaire (as correlation across questionnaire 

scores ranged greatly from r = -0.09 to 0.79), taking the intercept as random effect. 

For the transdiagnostic analysis, we included all three dimensions in the same model. 

We replaced QuestionnaireScore in the previous model equation with three 

psychiatric dimensions (AD, CIT, SW) entered as z-scored fixed effect predictors 

together.  

 

We found that for both stages, there was a decrease in alpha power associated with 

compulsivity (first stage: β = -0.56, SE = 0.18, p = 0.002; second stage: β = -0.20, 

SE = 0.05, p < 0.001). However, this effect was not related to model-based control 

in either stages (first stage: β = 0.12, SE = 0.17, p = 0.43; second stage: β = 0.04, 

SE = 0.05, p = 0.42).  
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Supplemental Figure A.II.S8. Second stage response-locked alpha power and 

transition type. Grand average waveforms of rare versus common transitions were 

plotted. A significant association was found between single-trial alpha estimates 

(measured as the mean of ±100ms centered around each participant’s averaged 

latency of the negative peak) and transition type (β = 0.06, SE = 0.01, p < 0.001). 

Similar to stimulus-locked alpha, rare transitions showed greater depression of 

alpha during choice selection for rare versus common transitions. 
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.  

Supplemental Figure A.II.S9. Second stage stimulus-locked theta power. 

Topography plot shows theta power increase after stimulus-onset at the mid-frontal 

scalp. White dots indicate electrode sites (C21 (Fz), C22, C23 (FCz), A1 (Cz)) where 

theta power was measured. No difference was observed between the grand average 

waveforms obtained across rare versus common transitions. 

 

Single-trial second stage theta power estimates were measured as the mean 

amplitude ±250ms around the average latency of the positive peak, specific to each 

individual, and found within a search window from 0ms to 500ms after stimulus onset. 

These were regressed against Transition (rare: 1, common: 0) as the intercept and 

as random effects. The model was: Theta ~ Transition + (Transition + 1 | Subj).  

 

In contrast to alpha power, theta power at second stage was not associated to 

transition types (β = 0.03 SE = 0.02, p = 0.22) (Figure A.II.S9). Theta was also not 

associated to compulsivity (β = -0.0001, SE = 0.03, p < 1) nor model-based planning 
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(β = 0.01, SE = 0.03, p = 0.57) nor any transition interaction effects with compulsivity 

(β = -0.03, SE = 0.03, p = 0.31) or model-based planning (β = 0.03, SE = 0.02, p = 

0.23).  
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Disorder Diagnosis 

Mood disorders 

Major depressive disorder 18 

Suicide behavior disorder 1 

Bipolar Disorder 1 

Anxiety disorders 

Panic Disorder 12 

Agoraphobia 5 

Generalised Anxiety Disorder 13 

Social Anxiety Disorder 10 

Obsessive-Compulsive Disorder 4 

Posttraumatic Stress Disorder 0 

Substance use disorders 

Alcohol Use Disorder 6 

Substance Use Disorder (Non-alcohol) 9 

Psychotic Disorders 

Psychotic Disorders 0 

Eating Disorders 

Anorexia Nervosa 0 

Bulimia Nervosa 2 

Binge-Eating Disorder 4 

Other disorders 

Antisocial Personality Disorder 2 

Supplemental Table A.II.S3. Mini International Neuropsychiatric interview (M.I.N.I.) 

diagnostic information summary for participants who presently met the criteria for at 

least one DSM-V disorder (N = 35).
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Appendix III: Supplemental information for Chapter 4 

 

A.III. Supplemental Methods 

 

ERN, demographics and error rate. In existing work, age, gender and IQ 

(Falkenstein et al., 2001; Fischer et al., 2016; Larson et al., 2016; Zijlmans et al., 

2019) yield various relationships with ERN amplitude. We explored their effects 

on ERN in our data. IQ (β = -0.38, SE = 0.20, p = 0.06) and age (β = 0.39, SE = 

0.20, p = 0.05) showed a trending effect with ERN amplitude shifts, while gender 

not associated (both p < 1). We also observed that error rate was related to the 

ERN (β = 0.40, SE = 0.20, p = 0.04). However, inclusion of age and IQ nor error 

rate did not change the effect of questionnaires scores on ERN amplitude (all p 

> 0.13, uncorrected).  

 

ERN and medication status. The ERN has also been previously influenced by 

various psychotropic medication (Bates et al., 2002; de Bruijn et al., 2006; 

Endrass et al., 2008; Henderson et al., 2006; Riba et al., 2005). Only 31 (15.82%) 

participants were currently medicated for a mental health issue, which was too 

small a sample to conduct analyses divided by medication type. Nonetheless, we 

investigated if medication status was related to ERN amplitude. It was not (β = 

0.80, SE = 0.55, p = 0.15), and neither did inclusion of medication status 

significantly modulate the effect of questionnaires scores on ERN amplitude (all 

p > 0.09, uncorrected). 
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ERN amplitude measures. In the literature, there are various ways to quantify 

ERN amplitude (Clayson et al., 2013). Here we report the supplementary 

analyses showing that the main results were not due to our chosen analysis 

approach—whether it was from electrode site (Supplemental Figure A.III.S6) or 

ERN quantification method (Supplemental Figure A.III.S7, method details 

below). 

 

For non-adaptive mean, ERN amplitude calculated as the mean of ±40ms at 

37.61ms post-response, which was the mean latency of the most negative peak 

across participants. For peak, the most negative peak was identified, and 

amplitude was extracted, for each participant by searching for the largest 

preceding negativity within -20ms to 120ms post-response. For trough-peak, the 

trough was identified for each participant by searching for the largest preceding 

positivity within -100ms before the peak. The amplitude of this positive peak was 

then subtracted from the negative peak amplitude.  

 

ERN controlled for CRN variation. A common method thought to isolate activity 

specific to error monitoring is calculated by the subtraction of the CRN from the 

ERN i.e. ERN-CRN (ΔERN) (Gehring et al., 1993). However, using the 

subtraction method is conceptually problematic as the ERN and CRN are highly 

correlated across individuals (here, ERN and CRN correlate: r = 0.30, p < 0.001). 

This is because difference scores are not independent from the constituent 

measures (i.e. ΔERN is not an error processing measure independent of the 

CRN) and may conflate effects relating to either signal (A. Meyer et al., 2017). 

An alternative approach to control for variation of the CRN is to use the variation 
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left over from a regression of CRN predicting ERN (ERNresid) as the ERN 

amplitude measure. ERNresid was correlated to ERN (r = 0.95, p < 0.001) but not 

to the CRN (r = ~0, p = 1), suggesting that it specifically indexes error-related 

activity and is a more interpretable measure. We report the associations of these 

two different ERN measures, ΔERN and ERNresid with questionnaire scores 

(Supplemental Figure A.III.S8 and Table A.III.S3), and note both findings do 

not reveal any significant effects (all p > 0.12, uncorrected). 

 

ERN, depression and anxiety. Previous studies have suggested that 

depression can reduce the increased ERN amplitudes effect associated with 

anxiety (Weinberg et al., 2016; Weinberg, Klein, et al., 2012; Weinberg, Kotov, 

et al., 2015). We tested if this was true in our data by regressing depression and 

anxiety total scores against ERN estimates in the same model. Both effects 

remained non-significant; but the direction of effects was perhaps more 

representative of the literature with anxiety leaning towards a larger ERN (β = -

0.33, SE = 0.30, p = 0.27) and depression towards a smaller ERN (β = 0.43, SE 

= 0.30, p = 0.16). 

 

Goal-directed learning. The same sample of participants (N = 234) completed 

the two-step reinforcement learning task (Daw et al., 2011). Several exclusion 

criteria were applied to ensure data quality, on a rolling basis. i) Participants who 

responded with the same key in stage one >90% (n = 135) of the time (N = 10).  

ii) Participants whose probability of staying after common, rewarded trials was 

less than 5% likely to be at chance, based on a binomial distribution with 50% 

(chance) probability and the total number of common-rewarded trials 
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experienced by each participant (N = 11). iii) Participants who missed >20% (n = 

30) of the trials were excluded (N = 3). (iv) Participants who incorrectly responded 

to a “catch” question within the questionnaires: “If you are paying attention to 

these questions, please select ‘A little’ as your answer” were excluded (N = 7). 

(v) As we intend to analyse the EEG data collected for this task, we additionally 

excluded participants whose EEG data were incomplete (N = 5) or corrupt (N = 

2) from the analysis. 38 participants (16.24%) were excluded in total, leaving 196 

participants for analysis. To clean the task data, we excluded individual trials with 

very fast reaction times (<150ms) reflecting inattention or poor responding. 

Including missed trials, a total of 1114 (3.77%) trials were excluded. 

 

To estimate goal-directed learning, we performed logistic regression via mixed-

effects models with the lme4 package in R, with Bound Optimization by Quadratic 

Approximation (bobyqa) with 1e5 functional evaluations. The basic model tested 

if participants’ choice behaviour to Stay or switch relative to previous choice 

(stay: 1, switch: 0) was influenced by the previous trial’s Reward (rewarded: 1, 

unrewarded: -1), Transition (common (70%): 1, rare (30%): -1) and their 

interaction, with age, gender and IQ as z-scored fixed-effects covariates. Within-

subject factors (the intercept, main effects of reward, transition, and their 

interaction) were taken as random effects (i.e. allowed to vary across 

participants). In syntax of R, the model was: Stay ~ Reward * Transition + 

(Reward * Transition + 1 | Subject). The interaction effect between Reward and 

Transition was significant, indicating a contribution of goal-directed learning to 

choice behaviour (β = 0.20, SE = 0.03, p < 0.001). To test if symptom dimensions 

were associated with goal-directed learning deficits, we included the total scores 
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of the three dimensions (anxious-depression, compulsive behaviour and 

intrusive thought (‘compulsivity’), social withdrawal) as z-scored fixed effect 

predictors into the basic model described above. The model was: Stay ~ Reward 

* Transition + (Anxious-depression + Compulsivity + Social withdrawal) + 

(Reward * Transition + 1 | Subject). The extent to which a dimension is related to 

deficits in goal-directed learning was indicated by the presence of a significant 

Reward*Transition*Dimension interaction. In prior work, age and IQ were 

associated to model-based planning (Gillan et al., 2016). Inclusion of these 

demographics did not change the pattern of effect to compulsivity (β = -0.08, SE 

= 0.04, p = 0.04). 
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A.III. Supplemental Figures and Tables 

 

Supplemental Figure A.III.S1. Across participants, the distribution of: (A) Mean 

error rate. (B) Mean response time (RT). (C) Mean RT by trial congruency. (D) 

Mean RT by trial congruency. (E) Mean RT by trial accuracy. (F) Mean RT by 

post-trial accuracy. Vertical lines denote mean error rate/RT for respective trial 

type. 
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Supplemental Figure A.III.S2. Mean error rate and response times (RT) for 

various trial types. cC: congruent trials preceded by a congruent trial, cI: 

incongruent trial preceded by a congruent trial, iC: congruent trial proceeded by 

an incongruent trial), iL: incongruent trial preceded by an incongruent trial). White 

dots represent individual participants, red marker indicates mean and SD. 

 

Conflict adaptation. Conflict adaptation effects refer to the phenomenon 

wherein previous-trial congruency affects current-trial performance, which have 

consistently been shown as behavioural adjustment in error rates and RTs in 

Flanker tasks (Clayson & Larson, 2011; Larson et al., 2016). We replicate these 

effects, where mean error rates were smaller for iI than for cI trials (t195 = -22.08, 

95% CI [-0.18, -0.15], p < 0.001) and for cC relative to iC trials (t195 = -15.76, 95% 

CI [-0.11, -0.08], p < 0.001). Additionally, mean RTs were shorter for iI compared 

to cI (t195 = -24.24, 95% CI (Confidence Interval) [-0.05, -0.04], p < 0.001) and for 

cC relative to iC (t195 = -32.48, 95% CI [-0.08, -0.07], p < 0.001) trials.  
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Supplemental Figure A.III.S3. 
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Supplemental Figure A.III.S3. Demographics and self-reported 

psychopathology spread. 

(A) Age, IQ and psychiatric symptoms score distributions across participants. 

(B) Correlation matrix of mean scores of the nine pyschiatric questionnaires or 

transformed dimension scores (AD: anxious-depression, CIT: compulsive 

behaviour and intrusive thought, SW: social withdrawal), including age and IQ. 

Colour scale indicates correlation coefficient, size of colour patch indicates 

significance.  
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Alcohol 

Addiction 
Apathy Depression 

Eating 

Disorder 
Impulsivity OCD Schizotypy 

Social 

Anxiety 

Trait 

Anxiety 

Alcohol Addiction          

Apathy 0.14         

Depression 0.09 0.62        

Eating Disorder 0.10 0.06 0.22       

Impulsivity 0.26 0.39 0.27 0.14      

OCD -0.05 0.23 0.39 0.25 0.18     

Schizotypy 0.08 0.46 0.60 0.27 0.51 0.49    

Social Anxiety -0.03 0.30 0.42 0.20 0.16 0.43 0.48   

Trait Anxiety 0.05 0.51 0.75 0.16 0.27 0.45 0.61 0.46  

 

Reliability 0.87 0.86 0.85 0.86 0.81 0.89 0.85 0.92 0.93 

Supplemental Table A.III.S1. Pearson’s correlations between total questionnaire scores. Cronbach's Alpha was used to calculate 

reliability for questionnaires. 
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 AD CIT SW 

AD    

CIT 0.33   

SW 0.38 0.39  

Supplemental Table A.III.S2. Pearson’s correlations between transdiagnostic 

dimensions scores (AD: ‘anxious-depression’, CIT: ‘compulsive behaviour and 

intrusive thought’, SW: ‘social withdrawal’). 
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Supplemental Figure A.III.S4. Associations between questionnaire scores with 

mean error rate (%). Error bars denote standard errors. The Y-axes indicate the 

change in error rate as a function of 1 standard deviation (SD) increase of 

questionnaire scores. No questionnaire score was significantly associated to 

changes in error rate. 
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Supplemental Figure A.III.S5. Scatterplots of ERN amplitude and total 

questionnaire scores. Coloured markers represent an individual’s total score for 

the corresponding questionnaire. See Figure 2 and Table 1. We note that a 

possible outlier appears to exist (ERN amplitude > -15 uV), but when the data 

point is removed, the associations between questionnaire scores and the ERN 

do not statistically differ from the original correlations (William’s test of correlation 

difference: all z < 0.40 , all p > 0.69). 
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Supplemental Figure A.III.S6.
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Supplemental Figure A.III.S6. ERN quantification at various electrode sites with 

the adaptive mean method. 

(A) Scalp map displays the voltage distribution at 37.61ms, the average latency 

of the most negative peak. Coloured dots indicate electrode positions around 

ERN peak; FCz: white, C22: green, C24: yellow, D2: pink. 

(B) Associations between questionnaire total scores with ERN amplitude 

quantified at various electrode sites. Error bars denote standard errors. The Y-

axes indicates the change in in ERN amplitude as a function of 1 SD increase of 

questionnaire scores. 
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Supplemental Figure A.III.S7. Associations between psychiatric symptoms with 

ERN amplitude quantified by various methods at electrode FCz. Error bars 

denote standard errors. The Y-axes indicate the change in ERN amplitude as a 

function of 1 SD increase of questionnaire scores. 
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Supplemental Figure A.III.S8. Associations between psychiatric symptoms with 

ΔERN and ERNresid amplitude. Error bars denote standard errors. The Y-axes 

indicate the change in ERN amplitude as a function of 1 SD increase of 

questionnaire scores. See Table A.III.S3. 
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 ΔERN ERNresid 

Psychiatric Questionnaire β (SE) z-value p-value β (SE) z-value p-value 

Alcohol Addiction 0.06 (0.20) 0.29 0.77 0.15 0.81 0.42 

Apathy 0.16 (0.20) 0.79 0.43 0.15 0.77 0.44 

Depression 0.32 (0.20) 1.55 0.12 0.24 1.24 0.21 

Eating Disorder 0.09 (0.20) 0.42 0.68 0.09 0.46 0.64 

Impulsivity -0.06 (0.20) -0.27 0.79 -0.03 -0.17 0.86 

OCD -0.08 (0.20) -0.37 0.71 -0.20 -1.02 0.31 

Schizotypy -0.05 (0.20) -0.22 0.83 -0.07 -0.35 0.73 

Social Anxiety 0.01 (0.20) 0.07 0.95 -0.05 -0.29 0.77 

Trait Anxiety 0.04 (0.20) 0.18 0.86 0.009 0.04 0.96 

Transdiagnostic Dimension β (SE) t-value p-value β (SE) t-value p-value 

Anxious-depression 0.11 (0.23) 0.49 0.62 0.16 0.76 0.45 

Compulsive behaviour and intrusive thought -0.01 (0.22) -0.06 0.95 -0.06 -0.29 0.77 

Social withdrawal -0.02 (0.24) -0.10 0.92 -0.11 -0.51 0.61 
 

Supplemental Table A.III.S3.
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Supplemental Table A.III.S3. Associations between ΔERN or ERNresid 

amplitude with total scores of self-report psychiatric questionnaires or 

transdiagnostic dimensions. SE = standard error. For psychiatric questionnaires, 

each row reflects the (uncorrected for multiple comparisons) results from an 

independent analysis where each psychiatric questionnaire score was regressed 

against ERN amplitude. For transdiagnostic dimensions, all three dimensions 

scores were included in the same regression model. See Figure A.III.S8. 
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Disorder Diagnosis 

Mood disorders 

Major depressive disorder 18 

Suicide behavior disorder 1 

Bipolar Disorder 1 

Anxiety disorders 

Panic Disorder 12 

Agoraphobia 4 

Generalised Anxiety Disorder 15 

Social Anxiety Disorder 11 

Obsessive-Compulsive Disorder 5 

Posttraumatic Stress Disorder 0 

Substance use disorders 

Alcohol Use Disorder 7 

Substance Use Disorder (Non-alcohol) 9 

Psychotic Disorders 

Psychotic Disorders 0 

Eating Disorders 

Anorexia Nervosa 0 

Bulimia Nervosa 1 

Binge-Eating Disorder 4 

Other disorders 

Antisocial Personality Disorder 1 

Supplemental Table A.III.S4. Mini International Neuropsychiatric interview 

(M.I.N.I.) diagnostic information summary for participants who presently met the 

criteria for at least one DSM-V disorder (N = 38). 


